Clothing Like A T-shirt Saying I Wish
The Report
20060219

Nicolas Léveillé <nicolas.leveille@free.fr>

Contents

I Introductionl 1
I—Foreword| 1
|2 Description| 2
(II' Design and Methodology| 2
B Where Am 1| 2
4 Where to go| 3
6_How to doifl 4
(II1 Implementation| 5
[6_Rationale 5
[T_Materials] 5
8 How to build a synth in two days| 6

81 Drumsl. 6

8 gsl. . 6
[9 Causes and consequences| 7
10 Code reuse via Mixin-style program- |

min 9
IV __ Conclusionl 9
[V Appendices| 12
11 Drums] 12
[L2 String phaser| 13
13 FDN Reverb 14

Part 1
Introduction

1 Foreword

In 2005, after a couple of years of ambitious, year-long
objectives that never really manifested, I decided it
was time to release again. I naturally became in-
terested in finding out what really is the difference
between fooling around and being productive. Those
projects probably did not fail for being too ambi-
tious. Fatigue, and changing interests are more re-
alistic threats to works that take long too manifest
themselves.

Fixing this was an inspiration, but inspiration also
came from my own enthusiasm: The rediscovery
of the trance-inducing graphics of the finest manic
shoot-em ups.[I] The increasingly out-reaching expo-
sure of the demoscene. And a feeling that it is now
that we should think and act instead of leading our
lives in the future tense, like todays mass culture,
politics and work environment all seem to suggest.

It was time to join the choir again.

In September 2005 something emerged, product of
many choices, some conscious and some other un-
conscious. Clothing Like A T-shirt Saying I Wish[2]
was released then, on 2005.09.17, at the streamMega
demo party, near the Finnish town of Tampere. With
it came the following note:

Clothing like a tshirt saying I wish [YOKO
VERSION]

70050917 @1553 Yl6jéarvi / Suomi

Barely two weeks of work. Intense and ev-
erything started from scratch. This intro is
more oldschool than most so-called olschool
demo are. Unoptimised and feeling yet no
guilt about it. Wait for the TATE version.

— Ce matin m’est arrivé un truc tres
désagréable

— Quoi donc?

— Je ne sais plus dire bonjour dans ma
propre langue.

Pollution, oui. Chomage, opérations sur
titre, harcelement sexuel, oui oui oui. Mais
plus bonjour.

— Ah. Et moi j'en ai assez de cette foutue
eau moderne qui ne fait plus de bruit quand
elle bout.

Contact info: tpolm@tpolm.org

Why write about an intro? Why write this, you
ask? Maybe because Clothing Like A T-Shirt Saying
I wish, like its title suggest is very thin and frag-
ile. It does not punch you in the face. Oh it may
stay opaque, or exude a sort of confidence, but it just
stands there, and I wanted to give it a body so it
could be hurt by others. Another reason is that I
wish more sharing of views might be done in written
form in the demoscene. If it could inspire others to
talk about making demos.

2 Description

Clothing Like A T-Shirt Saying I Wish is a sixty four
kilobytes intro. Its duration is approximately ninety
seconds, quite a bit shorter than usual intros and
demos. It is strictly black and white, and the graphics
and music are fully generated in real-time, two images
excepted. (a TV on its side, and the label “I=")

This duration of ninety seconds is divided in parts
of almost equal length, approximatively ten seconds
long. Each part draws two-dimensional patterns in
rhythm over an uniform vertical canvas.

The canvas has an aspect ratio of width/height =
3/4, in opposition to the wide-screen and large field
of view formats much in use today. (16/9, 16/10)
The two dimensional patterns make use of relatively
simple mechanism: most of them appear to be made
of moving objects (simple squares, arrows) moving

along predefined paths, or interacting with each-
other.

The only apparent signs of a macro-scale narrativeﬂ
are firstly the rhythm established by the music which,
although it does not seem to control the succession
of parts, seems to rule the patterns themselves, the
speed of elements, the appearances and causes and
effects particular to the pattern itself. Secondly, on
a wider scale, after forty-five seconds, the simultane-
ous appearance of a bass-drum, a kick, and the in-
version of the colours between black and white. The
canvas is afterwards uniformly black, and the mov-
ing objects white. The bass-drum also appear to be
strongly linked to the patterns’ movement, especially
at the inversion point, where a more singular pat-
tern is displayed: a not so uniform black canvas see
two white-on-black images successively appear and
dissolve again and again.

After this inversion, a succession of variations of
the original patterns appear, until the end where the
music and visuals both fade into the black canvas.

Part II
Design and
Methodology

3 Where Am 1

Imagine you are back on the fourth of September
2005. On that day, you decide to release something
for the next demo-party in Finland, known as stream
Mega, held from September 16th to September 18th.
Imagine also that your previous effort took you three
month to build, but that now you are contemplat-
ing at a mere thirteen days period. Nevertheless,
you have a clear mental image of what you want to
achieve. You don’t know exactly how, but you know
what. You remember the beautiful bullet patterns of
the finest shoot-em ups. You want to contrast the
often used cinematic 16/9 displays with an unusual

lfor an abstract piece, by narrative we mean the manifes-
tation of cause and effect

mailto:tpolm@tpolm.org

vertical display[3]. You remember how pleasant it is
to work on how things move and interact, and less
about how they precisely look.

With this in mind, the first decisive factor is the
available time. With nine hours work days and a
speculated eight hours of sleep a day to take into
account, this leaves 13days = 13%24—10%9—13%8 =
118hours of “leisure” time, and if eating is required,
I would say about 118 — (13 % 2 4 2) = 90hours.

The initial image, that of a minimalistic piece
made using two dimensional content comes both from
the initial shoot-em up inspiration, and a pragmatic
choice considering the remaining time. I was already
working on a vertical shooting game machinery, en-
abling the creation of interactive and scripted parti-
cles on a two dimensional canvas, ruled by Newtonian
physics, and with collision detection. It was decided
to re-use this code-base taken into account it was cer-
tainly not mature enough.

The second factor thus becomes the use of a rigid
system only capable of animating and displaying
scripted or simulated particles on a canvas.

The third factor then turns out to be size, since al-
though it was designed reasonably simple and small,
this system was already a few kilobytes in size. It is
reasonable to target the sixty-four kilobyte competi-
tion, granted that minimalism does not resonate well
with a multi-megabyte form.

Additionally, in a way this was also inspired by
Dierk “Chaos” Ohlerich’s presentation at FMX/05,
where he pushes the choice of programming content
generation versus traditional production means not
because it’s cool, but because it’s a sensible way to
do so: generating both visuals and music seems one
of the quickest way to achieve a coherent result.

For it is this coherency that gives confidence to a
piece, contributing to its believability, and this is the
final factor to take into account.

4 Where to go

Taking all this into account means that choices have
to be made both to on what to achieve, and how to
achieve it.

First, we have to balance what the piece shows with

what it costs to do so. It should not be expensive to
make, and taking the other factors into account, this
leaves room only for a modest output. For the sake
of coherency, it is also important to avoid any part to
look more achieved than others. At the same time,
there is a need to produce a reasonable impact.

Two-dimensional graphics are special because, for
most of the time, we as human beings engage in the
world in three dimensions. Our eyes are not at all
like cameras or camcorders. Rather than experienc-
ing our environment through pictures, we interact
through a three dimensional perception. We do not
interact with pictures directly, but through a complex
reconstruction.

All of this to say that we cannot really engage with
two dimensions only. Any picture goes through the
machinery that determines our entire visual experi-
ence: our senses seem to complete the blanks, the
empty spaces. They find alignments, weight shapes
with others, group them by category. Even count
them. With less things in the picture, the rest is
filled by the spectator’s experienceﬂ

So is the obvious choice to keep a very stream-
lined two dimensional look, very abstract, and full of
empty spaces? Only if we can play tricks with the
spectator’s perception, to build more out of less.

But we have to keep it coherent and balanced. If
the visuals look outlandish, the audio also needs to
equally sound abstract and drifty.

Scaffolding or building towers is out of the ques-
tion. We need to start wide and low and grow a little
step by step. But with a small quantity of material,
and too wide a base, the mountain might also not
look like any at all. It might not even look like a
hill. So with few materials we must settle down on
building a nice but very small hill, with an equally
small surface.

We must be able to grow all things in parallel, with
the same level of sophistication, the product always
kept within the final limitations of size and well. It
also had to keep working too.

2This is known as “Gestalt” or “Gestalt Theory” in psy-
chology, but see also [4]

5 How to do it

To address the time limitation, I found necessary
to adopt a regular development rhythm: working in
sessions of a predetermined lengtlrﬂ segmented into
smaller periodsﬂ with a short pause in between and
a longer pause between sessions. This division en-
ables sessions to produce actual result, and periods
make sure we can allow to regularly reflect on the
work being done. Pauses are real pauses, preferably
diverting your energy and intellect to something else
or more mundane. E| Each period corresponds to the
realization of a more or less precise goal. A log is
kept precisely, helping to know what’s been worked
on, and anything that needs to be worked on later.
It’s also important to always question the relative
importance of individual tasks to the greater picture.

The whole work must still compile and work after
each period. Reaching something deliverable after ev-
ery few periods, and saving it for future comparisons
is also worth it, if only to make sure we are staying
within the size limits.

Half of the total time must be kept to work on the
scripting and finishing touches. It is easy to forget
all the details that make up a finished product.

Another thing before I leave the topic: sleeping is

3180 minutes here

490 minutes here

5 The most common objects make very good design exer-
cises. We already have expectations about how they should
work and what we can do with them. But at the same time
through their current form they are the recipient of successful
experiences, the limitations of their original form or technol-
ogy, and the hidden hopes that men put into them.

Clocks are one of those common objects. Even if we rarely
wear a watch anymore, almost all devices nowadays include a
clock, though always the same digital clock. Gradually hidden
and surrounding us, they lost their flamboyant shapes and end
up looking all similar to each other.

If I was to design a clock, I would not make it at all like
a digital watch. Digital watches are only meant to make sure
we arrive on time to our meetings. They're not really saying
something about time, more about communication and social
structure. No, if I was to design a clock, it maybe would be
a drum machine. Why did we build this hierarchy of years,
months, weeks, days, hours, minutes and seconds? I believe
it is because we at the same time represent the scales, the
rhythms that our works requires. I believe our representation
of time really is a representation of tasks, and the rhythm of
these tasks inside other tasks.

not optional.

Technically-wise, Writing the most expressive
codeﬂ is essential. Expressivity: a good ratio between
the number of lines of code dedicated to the actual
result versus the number of lines dedicated to infras-
tructure. It enables dramatic changes to brought very
quickly. The idea here is to make it possible to ex-
periment while still controlling the process: We want
to be able to completely alter a part while still being
able to go back to the previous step. Keeping the
feedback loop short between coding and analysing is
important.

Aesthetically, some design choices were already
provided by the initial image: a two dimensional can-
vas, with a vertical 3/4 aspect ratio. Swarms of parti-
cles moving in geometrical patterns, filling the screen
with mazes in motion that an imaginary avatar might
navigate in. Some basic concepts were chosen as base
for patterns: Grouping and subdivisions, radiating
patterns, sequences of tightly aligned objects. The
idea of playing with the respective size of objects to
introduce a fake perspective was also decided at this
stage. Some other choices come from a certain coher-
ence with more generic design choicesﬂ no credits,
and two parts with an abrupt transition in between.

The shape, the design of the actual product is thus
a result of:

1. The limitations of the environment
2. The original concept or image
3. Chance

When considered as just a parameter of creation,
limitations form a simplifying mechanism: they en-
able us to experiment on a limited, still manageable
sub-set of parameters. They enable us not to be con-
fronted with too vast possibilities, when we, either by
chance or will, explore the bifurcations of the paths
they offer.

The concept is the direction one pushes towards. It
may not be easily translatable in an implementation,
but should form a strong and lasting image.

6it may also help creating the most interesting bugs, more
expressively.
"the != label

By chance, we mean what is happening day to day.
Nothing ever goes in a straight direction, and this is
where the creative mind plays its role. Creativity
is what emerges as the remains of a collision with
reality, the results of a form of problem solving.

Part 111
Implementation

6 Rationale

The general idea I am playing with these days is very
simple: first build a formal system or structure. Use
it. Use it, then, try to subvert it until something
different emerge. Why? What is being expressed
here? Maybe I am trying to understand how creation
works.

Maybe it does not really matter. The reactions of
a spectator do not depend so much on the destina-
tion of our own expressions (what we meant) and even
when they do, is it really the point? Some might want
to include the spectator in the system, but it does
not appear necessary. Spectators are already able to
create new meanings and sensations out of a non-
interactive form. A contrario, when given control of
the expressions, I expect spectators to temporarily
lose their critical abilities: because we are often un-
able to be critical of an experience of which we are
the main actor. This surely explains why sometimes
talking about a game is much more entertaining ac-
tually playing it.

You cannot build anything without materials, and
a structure without means of expression becomes like-
wise meaningless. Graphics and sounds are the ex-
pression media of a demo, while code form its struc-
ture but at the same time its primary expression
mean.

Of the 90hours of leisure time our little calcula-
tion gave for thirteen days of work, it turns out I
only could dedicate half of it for the implementation:
45hours. Until the end, where I also had to engage
in furious air plane and party coding, on a laptop not
even powerful enough to run the piece in realtime.

As always, I decided to make my work decently
reusable, because this had to serve as a base for
further works, ontﬂ of which was released only one
month after, at the Spanish party BCN.

When prototyping, the different parts were made
available through a menu instead of scripted as in the
final work. The menu was made using the shoot-em
up engine, the player’s ship (which is otherwise in-
visible during the demo) acting as a mouse pointer
emitting button activation events instead of devas-
tating shots.

7 Materials

Graphically wise it was already pre-decided, in a way:
two dimensional objects, rendering themselves over a
canvas using OpenGL. As well as animating their ren-
dering, they could also be animated as if they were
solid, with a mass and shape. The effort was put into
animating them together, their individual rendering
considered secondary, some vanishing or appearances
of objects excepted, and one single whole-screen ef-
fect was designed in the end. Some collision detec-
tion was even used for certain patterns, helped by
partitioning the canvas in areas[d]. Movements were
generally defined by the action of newtonian forces
on solid objects (Verlet integration[6] was used).

This whole-screen effect appears as a sort of screen
displaying images that dissolves almost immedi-
ately. Under the hood it models a non-homogeneous
medium with varying temperature and phase. The
phase determines whether a given area of the medium
is liquid or solid, and differential equations rule
how temperature changes when phases vary and how
phase changes when temperature varies. Each area is
then displayed as a black and white cell, depending
on its phase, slightly modulated by the temperature.
I

Audio wise, we had to have at least the basics.
One could build a totally alternative synth mimicking
the graphics’ evolutions[§]. But this does not seem
necessary nor even constructive, as music is one of the
most striking example of an abstract yet mainstream
form of expression. Representing structure through

81= - Walking on four

musically defined forms should prove more productive
and coherent than as a figurative audio simulation.

The intention being to generate content from this
structure I was talking about earlier, I had a very sim-
ple layer of scripting put inside the system. What do
I mean by scripting? I am talking about a method to
create “events”, points in time with singular proper-
ties. Causes to consequences. They may be followed
by abrupt changes, or gradual progressions, and one
of the goal is to make sure audio and visuals can listen
and react when any of these appear.

8 How to build a synth in two
days.

I had set my mind on fully generating the music. For
the actual audio production, subtractive synthesis is
always a safe choice. It produces sounds that most
are accustomed with, and does not require a big up
front effort in terms of design and implementation.
The minimum set of material was thus determined
to be: oscillators, envelope generators, filters.

For oscillators, I chose to implement band-limited
oscillators for the square and sawtooth oscillators. A
band-limited implementation guarantees that no har-
monics are produced above what the sample rate al-
lows, which means no aliasing. The square and saw-
tooth waveforms were created from Emanuel Lande-
holm’s implementation of a band limited sawtooth
wave form. [9] The square wave form was created
by integrating a combination of positive and nega-
tive pulse trains as proposed in [I0] No pulse-width
control was added.

Another necessary element is a low pass filter. A
standard choice is a so-called Butterworth (biquad)
filter, which provides a 12db slope and a resonance.
Not as sexy as a moog filter, but it will do the job.

To control the parameters a classic ADSRE| enve-
lope was made. Delay lines also, as a basic block.
The programming interface to them can be made very
simple: a buffer (delay line) in which only one pro-
ducer can write (the writer) and from which several

9 Attack Delay Sustain Release

consumers read at different intervals from the current
time.
The rhythm was picked as 112.5 beats per minute.

8.1 Drums

From those elements, we can first build a simple bass-

drum.(figure [2]) I chose to accompany this bassdrum,

with the simplest possible percussive instrument: a

short, tonal metronome-like (figure [3) sound “tick”.
A syncopated, alternating rhythm was picked:

click [every 2 ticks]
bassdrum [every tick + offset[3/4 of a tick]]

8.2 Strings

This alone feels quite empty, so we needed something
to fill the spectrum a bit. Synthetic string like sounds
would do the trick, but with only an oscillator, even
if layered as chords, it would sound quite dry. At
this point I remembered having stumbled on an or-
chestra¥] by Sean Costello for the CSound synthe-
sizer programming language back in 1996-1997. The
idea of his “Stringphaser” orchestra was to emulate
the liquid, powerful chorus effect of analog machines.
(“String ensembles”) It is nowaday pretty hard to
find the original orchestra on the net, but I could
find an archive of it in [I1].

The goal was to drive a polyphonic, very simple
synth made with just an oscillator and an envelope
generator through this “string phaser” in order to
turn it into something decent for atmospheric sounds.

The algorithm of the stringphaser itself is to ini-
tialise three delay lines, each modulated by two —
slow and fast — groups of three different waveforms,
rotated 27/3 one to another. This part sounds a
bit like a vibrato, and helps create the chorusing ef-
fect. The result of these delay lines is then taken to
a stack of allpass filters fed back to themselves, and
then mixed together. Through this we obtain a mix
of flanging/chorusing and vibrato, making the sound
more lively and full.

10this is how synthesizer constructs are named in CSound

The output of the stringphaser then goes through
a reverb, which is implemented as a simple version of
a Feedback Delay Network (FDN) reverb.[12]

The big picture (figure d)) can be broken down into:

e a phaser part (ﬁgure with n =5 and coef f =
—0.3

e a vibrato part (delay lines) figure |§|

e a reverb (figure [7) where delayl is 73.06 + 1.2
noise[at3100hz]milliseconds, delay2 is 83.9 +
1.32 * noise[at3500hz]milliseconds, delay3 is
97.7 + 1.87 * noise[at1110hz], delay4 is 107.3 +
0.66 * noise[at3973hz]. The multitap delay is
setup per figure

Although it is quite power hungry, since samples
are processed one after another instead of blocks of
samples per blocks of samples, this computational
power does not depend on the polyphony of the synth
that is being driven through the effect.

We then drive this polyphonic string ensemble by
a stream of notes taken from a very simple algorithm:

a note [every 8 ticks, 6 seconds long] with
midinote = 45 4+ random|0 - - - 16]

9 Causes and consequences

The piece does not show very complex interactions,
but as it was created as a stepping stone for more
interesting works, I took some time to think about
how to best integrate audio and video events from a
bottom-up perspective. My main motivation being
that one side should not exercise too much control
on the other[T] Relations shall be created between
the particular rhythm or evolution of one graphical
effect, and the evolution of the music not by synchro-
nising one to another, but by controlling both via a
separate, dedicated layer.

H1Which reminds me what a well known amiga scener once
said to me, by the bonfire of breakpoint’2004. I'll try to para-
phrase it here: in most pc demos, it’s the music that decides
what and when things happen, while in amiga demos, it’s the
graphics that do.

Akin to such graphical languages like MAX][I3],
Pure Data[l4] or VVVV[I5] one immediately envi-
sions a network-like structure. But I do not desire a
component-based description. I hope that higher ab-
stractions could be built to describe particular pat-
terns of interaction, something which is difficult to
do in such graphical languages.

Usually video or audio effects are implemented on
a template similar to this:

class Effect {
public:
/%
x called frame by frame, to
* create the audio or
* visuals
+/

processFrame (double ms, ...);

/x

* a parameter, that will be
* used when processing the
* next frame.

v/

void setParameterl (float p);

}

First it is impossible to make the parameter vary
during a frame, and secondly, parameter variations
require a timeframe or sequencer. Also, common
things like parameter interpolations or on the con-
trary, quantisations must be implemented inside the
effect.

I replaced this common pattern with the following;:

/%
An object representing a
connection to sources of

events (of type T)

By extension its
implementation determines
a way the environment
changes with time.

*/

template <typename T>
class Actuator;

/*
we can subscribe to an actuator,
and we thus obtain a type—safe
source of wvalues.

o/

template <typename T>
Source<T> subscribe (Actuator<I>&

Ve
a source is a way to
tap—in, to obtain
values out of a
temporal motif
+/
template <typename T>
class Source {
/x
* will return false occasionally
* in case of discontinuous
x sources.
v/
bool hasValue (double ms);
Ve
* returns the realtime value
*/
T getValue (double ms);

}

class Effect {
public:
/%
x called frame by frame, to
x* create the audio or
* visuals
*/

processFrame (double ms, ...);

/x

sets the parameter’s
actuator , which will
be used when
processing the next
frame.

The effect will
usually subscribe

¥ K X X X X X

* to 1t immediately.
*/
void setParameterl

(Actuator<float>& pa);

}

Then, in Effect :: processFrame, the effect obtains
realtime values from the source returned when sub-

as)c.lfibing to the actuator.

The parameter variations are then built totally ex-
ternally from the effect itself. As an example, we have
built the following actuators:

e an OscillatorActuator turning any audio oscilla-
tor into a source of events, useful when creating

LFOs.

e an ADSR actuator implementing the usual At-
tack Decay Sustain Release envelope.

e ConstantActuator returning a constant value ei-
ther once or repeatedly.

e MetronomeActuator returning a value at given
intervals.

We can then build more complex actuators by com-
bining simpler ones via combinators:

e a combinator that enables us to addition, multi-
ply the result of actuators together.

e a logical operation actuator combinator that re-
turns the value from the first actuator that re-
turns a value.

e a combinator that returns the value of an actu-
ator only if the other fires. This one is used for
example to sample an actuator at a given fre-
quency.

A difficulty arises when one must implement the ac-
tuator themselves, as they may be used by effects that
run at different frequencies, and in different threads.
We would not want side-effects to arise from the fact
an actuator is beeing used by two objects at the same
time.

This is the reason for the Actuator/Source di-
chotomy I introduced: while the Actuator may itself

be shared between all the audio/visual objects, the
Source is held by only one object. It can thus store a
private state, dependent for example on which values
have been returned so far.

Since actuators exist outside effects, their lifespan
must be controlled globally. To this end we chose to
address them via smart pointers, reference counted
pointers allowing to properly deallocate them when
they are not referenced to anymore.

10 Code reuse via Mixin-style
programming

When confronted with the design of the two dimen-
sional patterns I sought to create, I set a goal to im-
plement the different particle behaviours in the min-
imum amount of code, while at the same time when
prototyping being able to add and remove behaviours
at will. It felt important to be allowed to try out dif-
ferent versions of the same effect, or change the basic
behaviour of particles, the way they accelerates or
moves, their lifetime or even make them spawn new
particles.

Usually a behaviour is a combination of simpler,
disjoint behaviours: we should be able to express in-
teresting patterns in terms of combinations of specific
behaviours, implementable in a generic way: the base
class should not matter when writing the behaviour’s
code, except that it must adhere to a certain vague
contract. This contract was that all the objects had
to be able to take part in a physics simulation.

Composing behaviours like that is very easy in a
dynamic language such as Ruby where you can im-
port multiple classes as a way to merge and inherit
all of their specificities. It is very easy there, because
unlike c++4, the method lookups are done at run-
time, and their exact “location” inside another class
or type is not taken into account at all. This style of
programming has been named “Mixin-based.”

Although it is not a very common idiom in c++,
we can reach this goal by composing c++ templates
together, as a way to create new classes as a combi-
nation of roles. [I6] see also figure

The Mixin style enables good flexibility, through

a form of late “binding”. Choices are deferred until
the compiler instantiates the template and its func-
tions. So you can reference symbols that are still not
implemented, as long as the methods or classes are
not used the code still compile as a whole. One can
quickly turn an object into something else by com-
posing ready-made behaviours:

AirShip becomes TimeLimited< AirShip > and
voila, it can automatically disappear after a while
without having to change the original AirShip class.

One can thus combine archetypes together to
make more complex behaviours. For example:
ComposedObject< KeptInsideScreen< AirShip > >
defines an object that is composed of sub-objects,
with a constraint that it cannot leave the screen’s
area, and as an airship, is subjected to friction from
air and can only move through the acceleration of
its engines.

Some issues arise with this style of programming:
construction of objects becomes a bit unnatural, as
one must find a common protocol to build new in-
stances for what may be completely different sub-
trees of the class hierarchy. Some work[I7] exist to
solve the issue, but we choose to implement it via a
constructor parameter class, a description for new in-
stances that gets inherited from one level to another,
instead of via template meta-programming. Another
serious issue when coding a sixty-four kilobyte intro
is the resulting “code bloat” As new combinations of
behaviours get created, the compiler creates entirely
new classes, new functions. Of course using a good
packer[I8] helps, but this is an issue to watch out:
if many different combinations are used, then it be-
comes interesting to turn the Mixin-style code into a
more compact form, after prototyping.

Part IV
Conclusion

While the result of these thirteen days of work
was received in an interested although not-quite-
enthusiastic way, I am rather happy with it. It is
particularly special to me because it is modest and

/*
* This behaviour tracks instantiations of the class it is added to.
*/
template <class Base>
class AllocationTraced : public Base {
public:
Ve

* motice the constructor: here we have to define a standard
* construction protocol, to be able to chain all the mixzins
x templates until we reach the different base class’ constructors.
*
AllocationTraced (const Base::InstanceDesc& description)
Base (description) {
allocationId = newAllocation ();
increaseAllocationCounter ();

}

virtual ~AllocationTraced () {
decreaseAllocationCounter ();
}

private:
unsigned int allocationld;
s

/)

class String {

public:
struct InstanceDesc {
InstanceDesc (const char s) : s(s) {}

const charx s;

IE

String (const InstanceDesc& desc) {
/o
}

}

class Int {
public:
struct InstanceDesc {
InstanceDesc (int i) : i(i) {}
int i;

};

Int (const InstanceDesc& desc) {

72
}
}

/)

int main (int argc, charxx argv) {
const Int::InstanceDesc iDesc (OxDEADBEEF);
auto_ptr<Int> i = new AllocationTraced<Int> (iDesc); // allocation counter = 1

const String::InstanceDesc sDesc (”a.random._string”)
auto_ptr<String> s = new AllocationTraced<String> (sDesc); // allocation counter = 2

// destructors get called then allocation f@unter =0

Figure 1: a mixin example, tracing allocations of the classes it is mixed-into

not so impressive. Which is fine, even if or maybe
because it’s not very demo-like.

Bringing to life simple two-dimensional patterns,
was also quite fun, in a nostalgic kind of way. And
sharing this with others too.

11

Part V

Appendices

11 Drums

L 200hz

65hz 40hz

3500hz 6db

Figure 2: A basic bassdrum implementation

12

200hz

i
!

Figure 3: A short high-pitched click

12 String phaser

0.31

o

Figure 4: Global view of the stringphaser

13

allpass,

A}

{2 %055

Figure 5: Phaser

delay 5.55hz

X * vibrato/4 + 12ms X * vibrato/4 + 12ms X * vibrato/4 + 12ms

Figure 6: Vibrato made using varying delay lines

13 FDN Reverb

14

multitap delay

Figure 7: Feedback delay network reverb

0.4 —

0.3

gain
0.2 —

T I I I I
0 0.02 0.04 0.06 0.08

delay in milliseconds

Figure 8: Multitap delay used in the reverb

15

References

[1]

[15]

[16]

Guwange, E.S.P. Galuda, Dodonpachi, Dangun Feveron are among the many acclaimed ver-
tical shoot-em ups (STG) that the japanese studio Cave has released throughout the years.
http://www.cave.co. jp/

They innovated in the “Manic” shooter genre, characterized by screen-filling bullet patters, and an
emphasis on dodging by navigating through these moving mazes. (Another emphasis exists, on scoring
mechanisms)

= - Clothing Like A T-shirt Saying I Wish
http://scene.org/dir.php?dir=/parties/2005/stream05/in64/
http://www.pouet.net/prod.php?which=19028

The Fifty-Three Stations of the Tokaido by Ando Hiroshige, Ukyo-e elegance of the vertical form
“Point and Line to Plane” by Wassily Kandinsky
http://en.wikipedia.org/wiki/Quadtree

Verlet integration
http://en.wikipedia.org/wiki/Verlet_integration

”Visual Simulation of Ice Crystal Growth” by Theodore Kim and Ming C. Lim
http://www.cs.unc.edu/ geom/ICE/small.pdf

{ by the czech group Downtown, released in 2001.
http://downtown.dee.cz/

Bandlimited synthesis of sawtooth (Emanuel Landeholm, March 2002)
http://www.musicdsp.org/showArchiveComment .php?ArchiveID=90

Alias-Free Digital Synthesis of Classic Analog Waveforms by Tim Stilson and Julius Smith
The CSound Book, Edited by R.Boulanger, 2000 The MIT Press. ISBN 0-262-55261-6

Sean Costello cites “Designing Multi-Channel Reverberators,” by John Stautner and Miller Puckette in
Computer Music Journal, Vol. 6, No. 1, Spring 1982, P.52-65.

A product sold by cycling74, first conceived at IRCAM by Miller Puckette for musical applications.
http://cycling74.com/products/maxmsp

Pure Data, an opensource MAX /MSP like language with a rather active community. Created by Miller
Puckette

http://iem.at/pd/

http://www-crca.ucsd.edu/ "msp/

VVVYV by the german company meso, a video synthesis package inspired by MAX.
http://vvvv.meso.net/

“Mixin-Based Programming in C++" by Yannis Smaragdakis and Don Batory

16

[17] “A Solution to the Constructor-Problem of Mixin-Based Programming in C++” by Ulrich W. Eise-

necker, Frank Blinn, and Krzysztof Czarnecki

[18] 20to4 a packer by Marcus Winter (Muhmac / Freestyle)
http://20to4.net/

17

	I Introduction
	Foreword
	Description

	II Design and Methodology
	Where Am I
	Where to go
	How to do it

	III Implementation
	Rationale
	Materials
	How to build a synth in two days
	Drums
	Strings

	Causes and consequences
	Code reuse via Mixin-style programming

	IV Conclusion
	V Appendices
	Drums
	String phaser
	FDN Reverb

