
Attention:

This material is copyright 1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

Perspective Texture
Mapping, Part V:
It’s About Time

Finally! The moment

game developers have

been waiting for. At

long last, Chris Hecker

unveils the denoue-

ment of his texture

mapping series. What

a long, strange trip it

has been.

Chris Hecker

B E H I N D T H E S C R E E N
C
heck the date on the Game
Developer in your hands. Does
April/May 1996 mean any-
thing special? How about the
same issue last year: April/May
1995? What, you have no idea
what I’m talking about? That’s
understandable, since it was so

long ago. I’ll refresh your memory with a
small quote from my column in that
1995 issue: “My next two articles should
fix this lack of documentation, first by
giving an easy-to-understand mathemati-
cal foundation…and sample code to
implement the naive algorithm. In the
next article, we’ll speed it up to interac-
tive performance.”

Yes, you guessed it, the April/May
1995 issue contained the first installment
of my “two-part” perspective texture
mapping series. Now, a year later, we’re
finally going to finish the two part series
with this issue, part five. True to my soft-
ware engineering background, I can’t
estimate how long it will take me to do
something to save my life. However, I
feel the somewhat lengthy trip has been
worth it.

A Long, Strange Trip
Unlike the first installment, this article
will not be a journey through the elegant
theory and math behind perspective tex-
ture mapping. Instead, this article will
romp through the myriad optimization
tricks and techniques we can use to
squeeze every last bit of texture mapping
performance from the Intel Pentium
processor. While the rest of the series was
platform independent, we have to turn to
assembly language to get the most out of
modern processors, and the Pentium is
http://www.gdmag.com
the market leader (and the CPU I know
best). You’ll still get a lot from reading
this regardless of your chosen platform,
but the code is specific to Intel. However,
I got a new Macintosh clone from Power-
Computing with a PowerPC 604 chip in
it, so don’t be surprised to see a PowerPC
version of this texture mapper at some
later date (as soon as I get used to the
concept of 32 general purpose registers)!

To quickly bring us up to date, we
decided to use a subdivided affine
approximation to the true perspective
curve (Behind the Screen, Dec./Jan.
1995). This approximation uses short lin-
ear spans with perspectively correct end-
points to approximate the rational per-
spective curve. I modified the DrawScan-
Line function to do the affine subdivision
in C++ and the texture mapper got three
times faster than the version with the
divides. I uploaded a sample application
that contains the texture mappers we
developed so far. Of course, I was late in
uploading it (see above comment about
saving my life), and I apologize to anyone
who looked and couldn’t find it. The
sample is up now though—see the end of
this column for information on where to
find it.

I can provide an overall outline for
the optimizations we’ll cover before
going into detail. Our main optimiza-
tions will take advantage of the dual inte-
ger pipelines on the Pentium to imple-
ment a very fast fixed-point linear texture
mapper for our affine spans, and we’ll use
the floating-point unit’s ability to overlap
execution (especially those costly perspec-
tive divides) with integer instructions to
calculate the interpolation values for the
next span as we render the current span.
GAME DEVELOPER • APRIL/MAY 1996 25

B E H I N D T H E S C R E E N

Listing 1. The C++ Inner Loop
In addition, we’ll pull a bunch of cheap
tricks along the way to give it that extra
kick.

Carry Me Away
Listing 1 shows the C++ linear inner
loop for our DrawScanLine function. While
this is better than our previous loops with
their divides, it’s still not great because
it’s doing a multiply and a bunch of shifts
and adds for each pixel. If we look at why
it’s doing a multiply, we see it’s calculat-
ing the source texture offset for each new
coordinate, even though we’re just doing
a normal linear interpolation through the
texture for each span. By definition, a
linear interpolation increments by the
same amount each step, so we can take
advantage of this coherency to speed up
our loop.

Let’s ignore the V coordinate for the
moment and see how we can take advan-
tage of the U coordinate’s coherency. As
you can see from the loop, the U fixed-
point variable is shifted down to extract
its integer portion for each pixel, which is
then added into the texture pointer.
However, since we’re linear, the integer
portion of DeltaU is going to stay constant
for the span—always incrementing the
integer part of U by the same amount—
so there’s really no need to keep the inte-
ger portion of U around at all. If we think
only of the U increments, we can keep the
source pointer at the current texture pixel,
and we can find the next texture pixel by
just adding in the integer part of DeltaU—
calculated outside the loop—to the point-
er at each step. The only problem with
this plan is the fractional part of U plus
the fractional part of DeltaU will some-
times carry into the integer part of U. We
26 GAME DEVELOPER • APRIL/MAY 1996
need to know when this happens and add
an extra step to our source pointer.

This carry problem uncovers a major
hole in C and C++ from the standpoint of
integer optimizations: there’s no carry bit.
In other words, in assembly language, it’s
trivial to know when two added numbers
overflow because the carry bit will be set,
but in C++ there’s no way to know with-
out doing a bunch of cumbersome tests.
So, in pseudocode, we want to do this:

UFrac += DeltaUFrac

pTexture += DeltaUInt + Carry

Where the variable Carry is set to 0 if
the fractional addition didn’t carry into
the imaginary integer part (that we’re not
storing anymore) and is set to 1 if the
addition did carry. This pseudocode is
trivial in all the assembly languages I’ve
ever seen, for example, in x86 assembly:

add ebx,ecx

adc esi,edx

Assuming the given registers contain the
right values, the adc (add with carry) will
add in the step and any carry from the
previous addition. Implementing this
code in C++ would be a mess.

That’s it for the U coordinate, but
we conveniently ignored the V coordinate
because it’s a good deal trickier. Like U,
the V coordinate is linear for our span, so
we can precalculate our increment and
leave the integer part of V out of our loop.
However, as you can see from Listing 1,
the integer part of the V coordinate is
scaled to step vertically in our texture
bitmap. This doesn’t present a problem
for the normal V step, but when the frac-
http://www.mfi.com/gdmag
tional part of V carries into the integer
part, the source pointer no longer steps by
1, it steps by the width of the texture
bitmap. Not even assembly language has
an instruction to add in an arbitrary num-
ber—like the TextureDeltaScan in Listing
1—on carry.

Quickly adding in the vertical source
step on V’s carry is where 99% of the pro-
gramming brainpower is spent on linear
texture mapping optimizations. I’ve seen
about five or six ways of doing it myself,
but by far the coolest, fastest, and most
elegant way I’ve seen was invented by
Michael Abrash. However, before I
describe it, I’m going to address the opti-
mization a lot of the experienced texture
mappers in the audience think I’m going
to use here.

If you go out on the Internet and
look for affine texture mappers, you’ll
undoubtedly run into a lot of very opti-
mized x86 code that only works with
power-of-two source texture sizes, and
specifically two to the eighth power (or
256-bytes wide for 8bpp textures),
because if you keep your textures to a
power-of-two width, you can very easily
handle the V carry we’re discussing using
some special x86 instructions that operate
on 8-bit portions of the full registers.

Let’s run through an example, where
our source texture is 256 by 256. We’ll
use the x86’s ebx register, and its corre-
sponding “byte registers,” bh and bl. The
byte registers are part of the 32 bit ebx
register, and bl (b-low) is the lowest 8
bits—bit 0 through 7—and bh (b-high) is
the next higher 8 bits—bit 8 through 15.
If we keep the U coordinate in bl and the
V coordinate in bh, we can use the follow-
ing code to increment both U and V
(assuming ecx and edx have the current
UFrac and VFrac, respectively, and esi con-
tains the texture pointer):

add ecx,[DeltaUFrac]

adc bl,[UIntStep]

add edx,[DeltaVFrac]

adc bh,[VIntStep]

add esi,ebx

Notice the second adc. It adds in the
carry from the VFrac addition, but I just
got finished saying how this wouldn’t
for(int Counter = 0;Counter < AffineLength;Counter++)
{
int UInt = U>>16;
int VInt = V>>16;

*(pDestBits++) = *(pTextureBits + UInt +
(VInt * TextureDeltaScan));

U += DeltaU;
V += DeltaV;

}

B E H I N D T H E S C R E E N

Listing 2. The x86 Asm Inner Loop
work because V’s carry needs to add in the
width of the texture. The trick is that bh is
actually already multiplied by the width of
our texture—256—by virtue of its bit
position in ebx. Neat, huh? Now, given
such a cool trick, why wouldn’t we use it?
There are two reasons: first, restricting
yourself to power-of-two textures isn’t
very flexible and is bad for cache coheren-
cy (see Behind the Screen, Oct./Nov.
1995). More importantly, with the Pen-
tium Pro, this code will run slowly due to
a new pipeline stall called the Partial Reg-
ister Stall (PRS). The PRS happens when
you modify one of the byte registers and
then try to use the encompassing 32-bit
register, much like the above code. The
instruction add esi,ebx will stall for a very
long time on the Pentium Pro. Why did
Intel let this happen? I have no clue,
although they say it will let them increase
the clock speed more than if they had pre-
vented the stall. Regardless, it’s there, and
we’ll need to live with it.

So, given that we’re not going to use
the power-of-two texture trick, how do
we write our code so it can carry an arbi-
trary value into the pointer when VFrac
overflows? Enter Abrash’s code snippet
shown in Listing 2. This is the code for a
pixel from the middle of an unrolled loop,
so there’s a bit of setup not shown here,
but imagine this same snippet concate-
nated with itself a bunch of times. See if
you can figure out how it works and then
read on for the description of this tour de
force of optimization.

Hit the Pipe
There are so many cool things about this
code it’s hard to know where to start
describing it, but, since we were dis-
cussing the V carry, we’ll start with how
the code addresses that problem. The
28 GAME DEVELOPER • APRIL/MAY 1996
first half of the solution is these two
instructions:

add edx,[DeltaVFrac]

sbb ebp,ebp

The first instruction adds in the
fractional step as usual, but the second
instruction saves the carry flag, using a
neat trick involving the sbb (subtract
with borrow) instruction. The sbb
instruction is like the opposite of adc, it
subtracts its source from its destination,
but also subtracts the carry bit, so sbb
ebp,ebp will subtract the ebp register from
itself, giving 0 if there was no carry, or -1
if there was a carry. Thus, the carry bit
from the VFrac addition is stored as a 0
or a -1 in ebp.

The second half of the solution
comes with these instructions:

add ecx,ebx

adc esi,[4*ebp + UVStepVCarry]

The first instruction is the UFrac
addition, so after it completes, the carry
bit is set appropriately. The next instruc-
tion is where all the action occurs. It’s an
adc, so it adds in the carry from the UFrac
addition as you’d expect. However, it’s
an adc from memory, and it uses a two
dword array to accomplish its magic.
UVStepVCarry is the address of the second
dword in the array, and the 0 or -1 in ebp
from the VFrac carry will select either the
second dword if there was no V carry, or
the first dword if there was a V carry
(since 4 • -1 will subtact 4 bytes from the
array address). The only thing left is to
make sure the array has the appropriate
steps in it, including the U and V integer
steps and the V carry step for the first
element in the array.
http://www.mfi.com/gdmag
As if the basic operation wasn’t good
enough, the pipelining on this code is
amazing as well. The order of instructions
perfectly fills both pipes on the Pentium
and manages to run the two additions
from memory—both two-cycle instruc-
tions—in the Pentium U and V pipes at
the same time (remember, the next pixel’s
code will come right after this pixel, so
the add edx and the adc esi will run at the
same time). The instructions are also far
enough away from each other that there
are no Address Generation Interlocks.
Overall, it’s a beautiful piece of code.

Walking and Chewing Gum
Regardless of how amazing our integer
affine inner loop is, we’ll still be slower
than we need to be if we’re waiting for the
floating-point unit to calculate the per-
spective-corrected texture coordinates
before starting each span. This is where
the floating-point overlap I hinted about
in the last issue enters in. Most modern
processors can execute floating-point
instructions at the same time as integer
instructions, and some, like the Pentium,
can execute multiple floating-point
instructions at the same time. As an
example of integer and floating-point
overlap, the following code will take 36
cycles on a Pentium in double precision
mode:

fdiv [Number1]

fst [Number2]

The division takes 33 cycles, the
store takes two cycles, and there’s a one-
cycle stall for trying to store the result of
the division right after it’s completed.
Guess how long the following code takes:

fdiv [Number1]

rept 33

add ebx,ecx

add edx,eax

endm

fst [Number2]

To guess correctly, you need to
know that the rept macro repeats the
contained code 33 times, so there are
actually 66 instructions between the fdiv
and the fst. This is actually a trick ques-
add edx,[DeltaVFrac] ; add in dVFrac

sbb ebp,ebp ; store carry
mov [edi],al ; write pixel n

mov al,[esi] ; fetch pixel n+1
add ecx,ebx ; add in dUFrac

adc esi,[4*ebp + UVStepVCarry] ; add in steps

B E H I N D T H E S C R E E N
tion because this code takes the same 36
cycles as the first snippet, but we got to
execute 66 integer instructions for free!

Well, we don’t really get just any 66
instructions for free, but we do get 33 U
and V pipe slots in which we can try to
get some work done before using the
result of the division. Some instructions,
like integer multiplies, won’t overlap with
the floating-point unit, and you can’t
really do many other floating-point
instructions at the same time as floating-
point division, but we can start up the
30 GAME DEVELOPER • APRIL/MAY 1996

Listing 4. Quick Adding
Listing 3. Naive Adding
perspective divide for our next span and
have it calculate as we’re processing the
current span, making it almost free.

Short Stack
The second floating-point technique I
mentioned, executing multiple floating-
point operations simultaneously, is slight-
ly more convoluted. The Intel floating-
point architecture is stack based, which
means almost all the floating-point
instructions will only operate on the top
of the stack. This made it hard for Intel
to pipeline the floating-point unit for the
Pentium since all the instructions were
vying for the same register—the floating-
point top-of-stack register. So, instead of
breaking all the existing floating-point
code by making a bunch of new instruc-
tions to randomly access the floating-
point registers, Intel decided to make it
possible to move operands around on the
stack very quickly. I actually wish they’d
broken the code and made random regis-
http://www.mfi.com/gdmag
ter access easy, but Intel doesn’t usually
ask my opinion on these things, so I’ll
quickly describe the stack-based solution.

Listing 3 shows the obvious way to
add some numbers together, along with
the cycle counts for each instruction. It’s
implementing this C++ code:

a1 += b1; c1 += d1; e1 += f1;

The code executes in 21 cycles,
including the three stalls (the 2+1 fstp
fld [a1] ; 1
fadd [b1] ; 3
fstp [a1] ; 2+1
fld [c1] ; 1
fadd [d1] ; 3
fstp [c1] ; 2+1
fld [e1] ; 1
fadd [f1] ; 3
fstp [e1] ; 2+1
fld [a1] ; 1
fadd [b1] ; 1
fld [c1] ; 1
fadd [d1] ; 1
fld [e1] ; 1
fadd [f1] ; 1
fxch st(2) ; 0
fstp [a1] ; 2
fstp [c1] ; 2
fstp [e1] ; 2

B E H I N D T H E S C R E E N
timings) for storing the results of an
operation immediately following its
completion. Listing 4 shows an alternate
implementation of the same code, which
executes in 12 cycles, or almost twice as
fast. The instructions can pipeline if you
don’t access their results before the
instruction is finished (the fld instruc-
tion pushes its operand onto the stack,
and the previous fadd continues on its
operand even as it’s moved down one
stack position). In our example, the fadds
take 3 cycles each in Listing 3, but only a
single cycle each in Listing 4.

The second thing to notice is that
the fxch instruction is free in Listing 4.
This is Intel’s offering to the angry God
of Processor Architecture, who threat-
ened to smite Intel dead if it didn’t
pipeline the floating-point unit. The
almost-free fxch instruction makes it
possible—not easy, just possible—to
pipeline your floating-point code even
though most of the instructions only
operate on the top-of-stack register.
Using fxch, you can move things around
while they’re still calculating, like the
e1+f1 addition in Listing 4. I called it
“almost-free” because there are some
restrictions you have to obey to keep it
free; for example, the following instruc-
tion must be a floating-point operation,
as it will stall a cycle if the following
instruction is an integer operation. Intel’s
AP500 Application Note, available on
their www.intel.com site and the Intel
Architecture Labs CD, describes this
technique in detail.

Finally
There are more tricks in the assembly
texture mapper that deserve a mention,
but they’re all minor and I’m out of
space. You can find them in the code
itself. As with most assembly code, the
texture mapper is way too long to
include here in the magazine. You can,
however, get it in the texture mapping
archive on the Game Developer web site,
on its ftp site (ftp.mfi.com/pub/
gamedev/src), or on my homepage at
http://ourworld.compuserve.com/
homepages/checker.

How fast is it? Well, I must admit,
I’m not finished optimizing it yet as I
write this (again, see the comment about
estimating how long it takes me to do
something at the beginning of this arti-
cle), but it’s already two times as fast as
the C++ subdividing affine texture map-
per, and I hope to make it another two
times faster by the time you read this
and are able to pick up the code. It’s cur-
rently drawing 4.5 million pixels per sec-
ond on a Pentium 133, which is 5 times
faster than our original texture mapper,
and fast enough to do 70 frames per sec-
http://www.mfi.com/gdmag
ond at 320 by 200 if you’re not doing
anything else except texture mapping.
That’s definitely fast enough for a high-
end 3D game, and I think we can safely
say we’ve met the goals we set for our-
selves at the beginning of this series,
even if we did meet them a bit late. ■

You can e-mail Chris Hecker at check-
er@bix.com. Don’t be surprised if it takes
him a while to respond, although he’ll assure
you it will only take a second....
GAME DEVELOPER • APRIL/MAY 1996 33

Please use checker@d6.com.

