

NVIDIA OpenGL
Extension Specifications

NVIDIA Corporation

December 9, 1999

 NVIDIA OpenGL Extension Specifications

 2

Copyright NVIDIA Corporation, 1999.

Portions of this document are authored by NVIDIA and are NVIDIA
Proprietary as noted.

NVIDIA OpenGL Extension Specifications Table of Contents

 3

Table of Contents

Table of Contents... 3
Table of NVIDIA OpenGL Extension Support.............................. 4
EXT_abgr.. 5
EXT_bgra.. 8
EXT_blend_color.. 10
EXT_blend_minmax... 13
EXT_blend_subtract... 16
EXT_compiled_vertex_array.. 19
EXT_fog_coord.. 22
EXT_light_max_exponent... 29
EXT_packed_pixels.. 31
EXT_paletted_texture... 40
EXT_point_parameters... 48
EXT_rescale_normal... 53
EXT_secondary_color.. 56
EXT_separate_specular_color.. 64
EXT_shared_texture_palette... 69
EXT_stencil_wrap... 72
EXT_texture_cube_map... 74
EXT_texture_edge_clamp... 87
EXT_texture_env_add.. 90
EXT_texture_env_combine.. 93
EXT_texture_filter_anisotropic....................................... 99
EXT_texture_lod_bias.. 104
EXT_texture_object.. 108
EXT_vertex_array.. 116
EXT_vertex_weighting.. 128
NV_blend_square... 139
NV_fog_distance... 142
NV_register_combiners... 146
NV_texgen_emboss.. 166
NV_texgen_reflection.. 172
NV_texture_env_combine4... 175
NV_vertex_array_range... 180
SGIS_texture_lod.. 191
WGL_EXT_swap_control.. 198

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications

 4

Table of NVIDIA OpenGL Extension Support

Extension

RIVA 128
family

RIVA TNT
family

GeForce
family

OpenGL 1.2
functionality

ARB_multitexture X X
EXT_abgr X X X
EXT_bgra X X X Y
EXT_blend_color X ARB_imaging
EXT_blend_minmax X ARB_imaging
EXT_blend_subtract X ARB_imaging
EXT_compiled_vertex_array X X
EXT_filter_anisotropic X
EXT_fog_coord X X
EXT_light_max_exponent X X
EXT_packed_pixels X X X Y
EXT_paletted_texture X
EXT_pointer_parameters X X X
EXT_rescale_normal X Y
EXT_secondary_color X X
EXT_separate_specular_color X X Y
EXT_shared_texture_palette X
EXT_stencil_wrap X X X
EXT_texture_cube_map X
EXT_texture_edge_clamp X X Y
EXT_texture_env_add X X
EXT_texture_env_combine X X
EXT_texture_lod_bias X
EXT_texture_object X X X
EXT_vertex_array X X X
EXT_vertex_weighting X X
KTX_buffer_region X X X
NV_blend_square X X
NV_fog_distance X X
NV_register_combiners X
NV_texgen_emboss X
NV_texgen_reflection X X X
NV_texture_env_combine4 X X
NV_vertex_array_range X
SGIS_multitexture X X
SGIS_texture_lod X Y
WGL_EXT_swap_control X X
WIN_swap_hint X X X

Warning: The extension support columns are based on the latest & greatest
NVIDIA driver release. Check your GL_EXTENSIONS string with glGetString
at run-time to determine the specific supported extensions for a particular
driver version.

NVIDIA OpenGL Extension Specifications EXT_abgr

 5

Name

 EXT_abgr

Name Strings

 GL_EXT_abgr

Version

 $Date: 1995/03/31 04:40:18 $ $Revision: 1.10 $

Number

 1

Dependencies

 None

Overview

 EXT_abgr extends the list of host-memory color formats. Specifically,
 it provides a reverse-order alternative to image format RGBA. The ABGR
 component order matches the cpack Iris GL format on big-endian machines.

New Procedures and Functions

 None

New Tokens

 Accepted by the <format> parameter of DrawPixels, GetTexImage,
 ReadPixels, TexImage1D, and TexImage2D:

 ABGR_EXT 0x8000

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

 One entry is added to table 3.5 (DrawPixels and ReadPixels formats).
 The new table is:

EXT_abgr NVIDIA OpenGL Extension Specifications

 6

 Target
 Name Type Elements Buffer
 ---- ---- -------- ------
 COLOR_INDEX Index Color Index Color
 STENCIL_INDEX Index Stencil value Stencil
 DEPTH_COMPONENT Component Depth value Depth
 RED Component R Color
 GREEN Component G Color
 BLUE Component B Color
 ALPHA Component A Color
 RGB Component R, G, B Color
 RGBA Component R, G, B, A Color
 LUMINANCE Component Luminance value Color
 LUMINANCE_ALPHA Component Luminance value, A Color
 ABGR_EXT Component A, B, G, R Color

 Table 3.5: DrawPixels and ReadPixels formats. The third column
 gives a description of and the number and order of elements in a
 group.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 The new format is added to the discussion of Obtaining Pixels from the
 Framebuffer. It should read " If the <format> is one of RED, GREEN,
 BLUE, ALPHA, RGB, RGBA, ABGR_EXT, LUMINANCE, or LUMINANCE_ALPHA, and
 the GL is in color index mode, then the color index is obtained."

 The new format is added to the discussion of Index Lookup. It should
 read "If <format> is one of RED, GREEN, BLUE, ALPHA, RGB, RGBA,
 ABGR_EXT, LUMINANCE, or LUMINANCE_ALPHA, then the index is used to
 reference 4 tables of color components: PIXEL_MAP_I_TO_R,
 PIXEL_MAP_I_TO_G, PIXEL_MAP_I_TO_B, and PIXEL_MAP_I_TO_A."

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 One entry is added to tables 1 and 5 in the GLX Protocol Specification:

 format encoding
 ------ --------
 GL_ABGR_EXT 0x8000

NVIDIA OpenGL Extension Specifications EXT_abgr

 7

 Table A.2 is also extended:

 format nelements
 ------ --------
 GL_ABGR_EXT 4

Errors

 None

New State

 None

New Implementation Dependent State

 None

EXT_bgra NVIDIA OpenGL Extension Specifications

 8

Name

 EXT_bgra

Name Strings

 GL_EXT_bgra

Version

 Microsoft revision 1.0, May 19, 1997 (drewb)
 $Date: 1997/09/22 23:03:13 $ $Revision: 1.1 $

Number

 129

Dependencies

 None

Overview

 EXT_bgra extends the list of host-memory color formats.
 Specifically, it provides formats which match the memory layout of
 Windows DIBs so that applications can use the same data in both
 Windows API calls and OpenGL pixel API calls.

New Procedures and Functions

 None

New Tokens

 Accepted by the <format> parameter of DrawPixels, GetTexImage,
 ReadPixels, TexImage1D, and TexImage2D:

 BGR_EXT 0x80E0
 BGRA_EXT 0x80E1

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

 One entry is added to table 3.5 (DrawPixels and ReadPixels formats).
 The new table is:

NVIDIA OpenGL Extension Specifications EXT_bgra

 9

 Name Type Elements Target Buffer
 ---- ---- -------- ------
 COLOR_INDEX Index Color Index Color
 STENCIL_INDEX Index Stencil value Stencil
 DEPTH_COMPONENT Component Depth value Depth
 RED Component R Color
 GREEN Component G Color
 BLUE Component B Color
 ALPHA Component A Color
 RGB Component R, G, B Color
 RGBA Component R, G, B, A Color
 LUMINANCE Component Luminance value Color
 LUMINANCE_ALPHA Component Luminance value,A Color
 BGR_EXT Component B, G, R Color
 BGRA_EXT Component B, G, R, A Color

 Table 3.5: DrawPixels and ReadPixels formats. The third column
 gives a description of and the number and order of elements in a
 group.

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Framebuffer)

 The new format is added to the discussion of Obtaining Pixels from
 the Framebuffer. It should read " If the <format> is one of RED,
 GREEN, BLUE, ALPHA, RGB, RGBA, BGR_EXT, BGRA_EXT, LUMINANCE, or
 LUMINANCE_ALPHA, and the GL is in color index mode, then the color
 index is obtained."

 The new format is added to the discussion of Index Lookup. It should
 read "If <format> is one of RED, GREEN, BLUE, ALPHA, RGB, RGBA,
 BGR_EXT, BGRA_EXT, LUMINANCE, or LUMINANCE_ALPHA, then the index is
 used to reference 4 tables of color components: PIXEL_MAP_I_TO_R,
 PIXEL_MAP_I_TO_G, PIXEL_MAP_I_TO_B, and PIXEL_MAP_I_TO_A."

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Revision History

 Original draft, revision 0.9, October 13, 1995 (drewb)
 Created
 Minor revision, revision 1.0, May 19, 1997 (drewb)
 Removed Microsoft Confidential.

EXT_blend_color NVIDIA OpenGL Extension Specifications

 10

Name

 EXT_blend_color

Name Strings

 GL_EXT_blend_color

Version

 $Date: 1995/03/31 04:40:19 $ $Revision: 1.7 $

Number

 2

Dependencies

 None

Overview

 Blending capability is extended by defining a constant color that can
 be included in blending equations. A typical usage is blending two
 RGB images. Without the constant blend factor, one image must have
 an alpha channel with each pixel set to the desired blend factor.

New Procedures and Functions

 void BlendColorEXT(clampf red,
 clampf green,
 clampf blue,
 clampf alpha);

New Tokens

 Accepted by the <sfactor> and <dfactor> parameters of BlendFunc:

 CONSTANT_COLOR_EXT 0x8001
 ONE_MINUS_CONSTANT_COLOR_EXT 0x8002
 CONSTANT_ALPHA_EXT 0x8003
 ONE_MINUS_CONSTANT_ALPHA_EXT 0x8004

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 BLEND_COLOR_EXT 0x8005

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

 None

NVIDIA OpenGL Extension Specifications EXT_blend_color

 11

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 The commands that control blending are now BlendFunc and BlendColorEXT.
 A constant color to be used in the blending equation is specified by
 BlendColorEXT. The four parameters are clamped to the range [0,1]
 before being stored. The default value for the constant blending color
 is (0,0,0,0).

 The constant color can be used in both the source and destination
 blending factors. Four lines are added to table 4.1 and table 4.2:

 Value Blend Factors
 ----- -------------
 ZERO (0, 0, 0, 0)
 ONE (1, 1, 1, 1)
 DST_COLOR (Rd/Kr, Gd/Kg, Bd/Kb, Ad/Ka)
 ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd/Kr,Gd/Kg,Bd/Kb,Ad/Ka)
 SRC_ALPHA (As, As, As, As) / Ka
 ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
 DST_ALPHA (Ad, Ad, Ad, Ad) / Ka
 ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
 CONSTANT_COLOR_EXT (Rc, Gc, Bc, Ac) NEW
 ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, Gc, Bc, Ac) NEW
 CONSTANT_ALPHA_EXT (Ac, Ac, Ac, Ac) NEW
 ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac) NEW
 SRC_ALPHA_SATURATE (f, f, f, 1)

 Table 4.1: Values controlling the source blending function and the
 source blending values they compute. Ka = 2**m - 1, where m is the
 number of bits in the A color component. Kr, Kg, and Kb are similarly
 determined by the number of bits in the R, G, and B color components.
 f = min(As, 1-Ad) / Ka.

 Value Blend Factors
 ----- -------------
 ZERO (0, 0, 0, 0)
 ONE (1, 1, 1, 1)
 SRC_COLOR (Rs/Kr, Gs/Kg, Bs/Kb, As/Ka)
 ONE_MINUS_SRC_COLOR (1, 1, 1, 1) - (Rs/Kr,Gs/Kg,Bs/Kb,As/Ka)
 SRC_ALPHA (As, As, As, As) / Ka
 ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
 DST_ALPHA (Ad, Ad, Ad, Ad) / Ka
 ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
 CONSTANT_COLOR_EXT (Rc, Gc, Bc, Ac) NEW
 ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, Gc, Bc, Ac) NEW
 CONSTANT_ALPHA_EXT (Ac, Ac, Ac, Ac) NEW
 ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac) NEW

 Table 4.2: Values controlling the destination blending function and
 the destination blending values they compute. Ka = 2**m - 1, where
 m is the number of bits in the A color component. Kr, Kg, and Kb
 are similarly determined by the number of bits in the R, G, and B
 color components.

 Rc, Gc, Bc, and Ac are the four components of the constant blending
 color. These blend factors are not scaled by Kr, Kg, Kb, and Ka,
 because they are already in the range [0,1].

EXT_blend_color NVIDIA OpenGL Extension Specifications

 12

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 A new GL rendering command is added. The following command is sent to the
 server as part of a glXRender request:

 BlendColorEXT
 2 20 rendering command length
 2 4096 rendering command opcode
 4 FLOAT32 red
 4 FLOAT32 green
 4 FLOAT32 blue
 4 FLOAT32 alpha

Errors

 INVALID_OPERATION is generated if BlendColorEXT is called between
 execution of Begin and the corresponding call to End.

New State

 Initial
 Get Value Get Command Type Value Attrib
 --------- ----------- ---- ------- ------------
 BLEND_COLOR_EXT GetFloatv C (0,0,0,0) color-buffer

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_blend_minmax

 13

Name

 EXT_blend_minmax

Name Strings

 GL_EXT_blend_minmax

Version

 $Date: 1995/03/31 04:40:34 $ $Revision: 1.3 $

Number

 37

Dependencies

 None

Overview

 Blending capability is extended by respecifying the entire blend
 equation. While this document defines only two new equations, the
 BlendEquationEXT procedure that it defines will be used by subsequent
 extensions to define additional blending equations.

 The two new equations defined by this extension produce the minimum
 (or maximum) color components of the source and destination colors.
 Taking the maximum is useful for applications such as maximum projection
 in medical imaging.

Issues

 * I've prefixed the ADD token with FUNC, to indicate that the blend
 equation includes the parameters specified by BlendFunc. (The min
 and max equations don't.) Is this necessary? Is it too ugly?
 Is there a better way to accomplish the same thing?

New Procedures and Functions

 void BlendEquationEXT(enum mode);

New Tokens

 Accepted by the <mode> parameter of BlendEquationEXT:

 FUNC_ADD_EXT 0x8006
 MIN_EXT 0x8007
 MAX_EXT 0x8008

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 BLEND_EQUATION_EXT 0x8009

EXT_blend_minmax NVIDIA OpenGL Extension Specifications

 14

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

 None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 The GL Specification defines a single blending equation. This
 extension introduces a blend equation mode that is specified by calling
 BlendEquationEXT with one of three enumerated values. The default
 value FUNC_ADD_EXT specifies that the blending equation defined in
 the GL Specification be used. This equation is

 C' = (Cs * S) + (Cd * D)

 / 1.0 C' > 1.0
 C = (
 \ C' C' <= 1.0

 where Cs and Cd are the source and destination colors, and S and D are
 as specified by BlendFunc.

 If BlendEquationEXT is called with <mode> set to MIN_EXT, the
 blending equation becomes

 C = min (Cs, Cd)

 Finally, if BlendEquationEXT is called with <mode> set to MAX_EXT, the
 blending equation becomes

 C = max (Cs, Cd)

 In all cases the blending equation is evaluated separately for each
 color component.

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 A new GL rendering command is added. The following command is sent to the
 server as part of a glXRender request:

NVIDIA OpenGL Extension Specifications EXT_blend_minmax

 15

 BlendEquationEXT
 2 8 rendering command length
 2 4097 rendering command opcode
 4 ENUM mode

Errors

 INVALID_ENUM is generated by BlendEquationEXT if its single parameter
 is not FUNC_ADD_EXT, MIN_EXT, or MAX_EXT.

 INVALID_OPERATION is generated if BlendEquationEXT is executed between
 the execution of Begin and the corresponding execution to End.

New State

 Get Value Get Command Type Initial Value Attribute
 --------- ----------- ---- ------------- ---------
 BLEND_EQUATION_EXT GetIntegerv Z3 FUNC_ADD_EXT color-buffer

New Implementation Dependent State

 None

EXT_blend_subtract NVIDIA OpenGL Extension Specifications

 16

Name

 EXT_blend_subtract

Name Strings

 GL_EXT_blend_subtract

Version

 $Date: 1995/03/31 04:40:39 $ $Revision: 1.4 $

Number

 38

Dependencies

 EXT_blend_minmax affects the definition of this extension

Overview

 Two additional blending equations are specified using the interface
 defined by EXT_blend_minmax. These equations are similar to the
 default blending equation, but produce the difference of its left
 and right hand sides, rather than the sum. Image differences are
 useful in many image processing applications.

New Procedures and Functions

 None

New Tokens

 Accepted by the <mode> parameter of BlendEquationEXT:

 FUNC_SUBTRACT_EXT 0x800A
 FUNC_REVERSE_SUBTRACT_EXT 0x800B

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

 None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 Two additional blending equations are defined. If BlendEquationEXT is
 called with <mode> set to FUNC_SUBTRACT_EXT, the blending equation
 becomes

NVIDIA OpenGL Extension Specifications EXT_blend_subtract

 17

 C' = (Cs * S) - (Cd * D)

 / 0.0 C' < 0.0
 C = (
 \ C' C' >= 0.0

 where Cs and Cd are the source and destination colors, and S and D are
 as specified by BlendFunc.

 If BlendEquationEXT is called with <mode> set to
 FUNC_REVERSE_SUBTRACT_EXT, the blending equation becomes

 C' = (Cd * D) - (Cs * S)

 / 0.0 C' < 0.0
 C = (
 \ C' C' >= 0.0

 In all cases the blending equation is evaluated separately for each
 color component.

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Dependencies on EXT_blend_minmax

 If this extension is supported, but EXT_blend_minmax is not, then
 this extension effectively defines the procedure BlendEquationEXT, its
 parameter FUNC_ADD_EXT, and the query target BLEND_EQUATION_EXT, as
 described in EXT_blend_minmax. It is therefore as though
 EXT_blend_minmax were also supported, except that equations MIN_EXT
 and MAX_EXT are not supported.

Errors

 INVALID_ENUM is generated by BlendEquationEXT if its single parameter
 is not FUNC_ADD_EXT, MIN_EXT, MAX_EXT, FUNC_SUBTRACT_EXT, or
 FUNC_REVERSE_SUBTRACT_EXT.

 INVALID_OPERATION is generated if BlendEquationEXT is executed between
 the execution of Begin and the corresponding execution to End.

EXT_blend_subtract NVIDIA OpenGL Extension Specifications

 18

New State

 Get Value Get Command Type Initial Value Attribute
 --------- ----------- ---- ------------- ------------
 BLEND_EQUATION_EXT GetIntegerv Z5 FUNC_ADD_EXT color-buffer

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_compiled_vertex_array

 19

 XXX - Not complete yet!!!

Name

 EXT_compiled_vertex_array

Name Strings

 GL_EXT_compiled_vertex_array

Version

 $Date: 1996/11/21 00:52:19 $ $Revision: 1.3 $

Number

 97

Dependencies

 None

Overview

 This extension defines an interface which allows static vertex array
 data to be cached or pre-compiled for more efficient rendering. This
 is useful for implementations which can cache the transformed results
 of array data for reuse by several DrawArrays, ArrayElement, or
 DrawElements commands. It is also useful for implementations which
 can transfer array data to fast memory for more efficient processing.

 For example, rendering an M by N mesh of quadrilaterals can be
 accomplished by setting up vertex arrays containing all of the
 vertexes in the mesh and issuing M DrawElements commands each of
 which operate on 2 * N vertexes. Each DrawElements command after
 the first will share N vertexes with the preceding DrawElements
 command. If the vertex array data is locked while the DrawElements
 commands are executed, then OpenGL may be able to transform each
 of these shared vertexes just once.

Issues

 * Is compiled_vertex_array the right name for this extension?

 * Should there be an implementation defined maximum number of array
 elements which can be locked at a time (i.e. MAX_LOCKED_ARRAY_SIZE)?

 Probably not, the lock request can always be ignored with no resulting
 change in functionality if there are insufficent resources, and allowing
 the GL to define this limit can make things difficult for applications.

 * Should there be any restrictions on what state can be changed while
 the vertex array data is locked?

 Probably not. The GL can check for state changes and invalidate
 any cached vertex state that may be affected. This is likely to
 cause a performance hit, so the preferred use will be to not change

EXT_compiled_vertex_array NVIDIA OpenGL Extension Specifications

 20

 state while the vertex array data is locked.

New Procedures and Functions

 void LockArraysEXT (int first, sizei count)
 void UnlockArraysEXT (void)

New Tokens

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 ARRAY_ELEMENT_LOCK_FIRST_EXT 0x81A8
 ARRAY_ELEMENT_LOCK_COUNT_EXT 0x81A9

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)

 After the discussion of InterleavedArrays, add a description of
 array compiling/locking.

 The currently enabled vertex arrays can be locked with the command
 LockArraysEXT. When the vertex arrays are locked, the GL
 can compile the array data or the transformed results of array
 data associated with the currently enabled vertex arrays. The
 vertex arrays are unlocked by the command UnlockArraysEXT.

 Between LockArraysEXT and UnlockArraysEXT the application
 should ensure that none of the array data in the range of
 elements specified by <first> and <count> are changed.
 Changes to the array data between the execution of LockArraysEXT
 and UnlockArraysEXT commands may affect calls may affect DrawArrays,
 ArrayElement, or DrawElements commands in non-sequential ways.

 While using a compiled vertex array, references to array elements
 by the commands DrawArrays, ArrayElement, or DrawElements which are
 outside of the range specified by <first> and <count> are undefined.

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

 None

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.1 Specification (Special Functions)

 LockArraysEXT and UnlockArraysEXT are not complied into display lists
 but are executed immediately.

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

 None

NVIDIA OpenGL Extension Specifications EXT_compiled_vertex_array

 21

Additions to the GLX Specification

 XXX - Not complete yet!!!

GLX Protocol

 XXX - Not complete yet!!!

Errors

 INVALID_VALUE is generated if LockArrarysEXT parameter <first> is less
 than zero.

 INVALID_VALUE is generated if LockArraysEXT parameter <count> is less than
 or equal to zero.

 INVALID_OPERATION is generated if LockArraysEXT is called between execution
 of LockArraysEXT and corresponding execution of UnlockArraysEXT.

 INVALID_OPERATION is generated if UnlockArraysEXT is called without a
 corresponding previous execution of LockArraysEXT.

 INVALID_OPERATION is generated if LockArraysEXT or UnlockArraysEXT is called
 between execution of Begin and the corresponding execution of End.

New State
 Initial
 Get Value Get Command Type Value Attrib
 --------- ----------- ---- ------- ------
 ARRAY_ELEMENT_LOCK_FIRST_EXT GetIntegerv Z+ 0 client-vertex-array
 ARRAY_ELEMENT_LOCK_COUNT_EXT GetIntegerv Z+ 0 client-vertex-array

New Implementation Dependent State

 None

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 22

 Name

 EXT_fog_coord

Name Strings

 GL_EXT_fog_coord

Contact

 Jon Leech, Silicon Graphics (ljp 'at' sgi.com)

Status

 Shipping (version 1.6)

Version

 $Date: 1999/06/21 19:57:19 $ $Revision: 1.11 $

Number

 149

Dependencies

 OpenGL 1.1 is required.
 The extension is written against the OpenGL 1.2 Specification.

Overview

 This extension allows specifying an explicit per-vertex fog
 coordinate to be used in fog computations, rather than using a
 fragment depth-based fog equation.

Issues

 * Should the specified value be used directly as the fog weighting
 factor, or in place of the z input to the fog equations?

 As the z input; more flexible and meets ISV requests.

 * Do we want vertex array entry points? Interleaved array formats?

 Yes for entry points, no for interleaved formats, following the
 argument for secondary_color.

 * Which scalar types should FogCoord accept? The full range, or just
 the unsigned and float versions? At the moment it follows Index(),
 which takes unsigned byte, signed short, signed int, float, and
 double.

 Since we're now specifying a number which behaves like an
 eye-space distance, rather than a [0,1] quantity, integer types
 are less useful. However, restricting the commands to floating
 point forms only introduces some nonorthogonality.

NVIDIA OpenGL Extension Specifications EXT_fog_coord

 23

 Restrict to only float and double, for now.

 * Interpolation of the fog coordinate may be perspective-correct or
 not. Should this be affected by PERSPECTIVE_CORRECTION_HINT,
 FOG_HINT, or another to-be-defined hint?

 PERSPECTIVE_CORRECTION_HINT; this is already defined to affect
 all interpolated parameters. Admittedly this is a loss of
 orthogonality.

 * Should the current fog coordinate be queryable?

 Yes, but it's not returned by feedback.

 * Control the fog coordinate source via an Enable instead of a fog
 parameter?

 No. We might want to add more sources later.

 * Should the fog coordinate be restricted to non-negative values?

 Perhaps. Eye-coordinate distance of fragments will be
 non-negative due to clipping. Specifying explicit negative
 coordinates may result in very large computed f values, although
 they are defined to be clipped after computation.

 * Use existing DEPTH enum instead of FRAGMENT_DEPTH? Change name of
 FRAGMENT_DEPTH_EXT to FOG_FRAGMENT_DEPTH_EXT?

 Use FRAGMENT_DEPTH_EXT; FOG_FRAGMENT_DEPTH_EXT is somewhat
 misleading, since fragment depth itself has no dependence on
 fog.

New Procedures and Functions

 void FogCoord[fd]EXT(T coord)
 void FogCoord[fd]vEXT(T coord)
 void FogCoordPointerEXT(enum type, sizei stride, void *pointer)

New Tokens

 Accepted by the <pname> parameter of Fogi and Fogf:

 FOG_COORDINATE_SOURCE_EXT 0x8450

 Accepted by the <param> parameter of Fogi and Fogf:

 FOG_COORDINATE_EXT 0x8451
 FRAGMENT_DEPTH_EXT 0x8452

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 CURRENT_FOG_COORDINATE_EXT 0x8453
 FOG_COORDINATE_ARRAY_TYPE_EXT 0x8454
 FOG_COORDINATE_ARRAY_STRIDE_EXT 0x8455

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 24

 Accepted by the <pname> parameter of GetPointerv:

 FOG_COORDINATE_ARRAY_POINTER_EXT 0x8456

 Accepted by the <array> parameter of EnableClientState and
 DisableClientState:

 FOG_COORDINATE_ARRAY_EXT 0x8457

Additions to Chapter 2 of the OpenGL 1.2 Specification (OpenGL Operation)

 These changes describe a new current state type, the fog coordinate,
 and the commands to specify it:

 - (2.6, p. 12) Second paragraph changed to:

 "Each vertex is specified with two, three, or four coordinates.
 In addition, a current normal, current texture coordinates,
 current color, and current fog coordinate may be used in
 processing each vertex."

 - 2.6.3, p. 19) First paragraph changed to

 "The only GL commands that are allowed within any Begin/End
 pairs are the commands for specifying vertex coordinates, vertex
 colors, normal coordinates, texture coordinates, and fog
 coordinates (Vertex, Color, Index, Normal, TexCoord,
 FogCoord)..."

 - (2.7, p. 20) Insert the following paragraph following the third
 paragraph describing current normals:

 " The current fog coodinate is set using
 void FogCoord[fd]EXT(T coord)
 void FogCoord[fd]vEXT(T coord)."

 The last paragraph is changed to read:

 "The state required to support vertex specification consists of
 four floating-point numbers to store the current texture
 coordinates s, t, r, and q, one floating-point value to store
 the current fog coordinate, four floating-point values to store
 the current RGBA color, and one floating-point value to store
 the current color index. There is no notion of a current vertex,
 so no state is devoted to vertex coordinates. The initial values
 of s, t, and r of the current texture coordinates are zero; the
 initial value of q is one. The initial fog coordinate is zero.
 The initial current normal has coordinates (0,0,1). The initial
 RGBA color is (R,G,B,A) = (1,1,1,1). The initial color index is
 1."

 - (2.8, p. 21) Added fog coordinate command for vertex arrays:

 Change first paragraph to read:

 "The vertex specification commands described in section 2.7
 accept data in almost any format, but their use requires many

NVIDIA OpenGL Extension Specifications EXT_fog_coord

 25

 command executions to specify even simple geometry. Vertex data
 may also be placed into arrays that are stored in the client's
 address space. Blocks of data in these arrays may then be used
 to specify multiple geometric primitives through the execution
 of a single GL command. The client may specify up to seven
 arrays: one each to store edge flags, texture coordinates, fog
 coordinates, colors, color indices, normals, and vertices. The
 commands"

 Add to functions listed following first paragraph:

 void FogCoordPointerEXT(enum type, sizei stride, void *pointer)

 Add to table 2.4 (p. 22):

 Command Sizes Types
 ------- ----- -----
 FogCoordPointerEXT 1 float,double

 Starting with the second paragraph on p. 23, change to add
 FOG_COORDINATE_ARRAY_EXT:

 "An individual array is enabled or disabled by calling one of

 void EnableClientState(enum array)
 void DisableClientState(enum array)

 with array set to EDGE_FLAG_ARRAY, TEXTURE_COORD_ARRAY,
 FOG_COORDINATE_ARRAY_EXT, COLOR_ARRAY, INDEX_ARRAY,
 NORMAL_ARRAY, or VERTEX_ARRAY, for the edge flag, texture
 coordinate, fog coordinate, color, color index, normal, or
 vertex array, respectively.

 The ith element of every enabled array is transferred to the GL
 by calling

 void ArrayElement(int i)

 For each enabled array, it is as though the corresponding
 command from section 2.7 or section 2.6.2 were called with a
 pointer to element i. For the vertex array, the corresponding
 command is Vertex<size><type>v, where <size> is one of [2,3,4],
 and <type> is one of [s,i,f,d], corresponding to array types
 short, int, float, and double respectively. The corresponding
 commands for the edge flag, texture coordinate, fog coordinate,
 color, color, color index, and normal arrays are EdgeFlagv,
 TexCoord<size><type>v, FogCoord<type>v, Color<size><type>v,
 Index<type>v, and Normal<type>v, respectively..."

 Change pseudocode on p. 27 to disable fog coordinate array for
 canned interleaved array formats. After the lines

 DisableClientState(EDGE_FLAG_ARRAY);
 DisableClientState(INDEX_ARRAY);

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 26

 insert the line

 DisableClientState(FOG_COORDINATE_ARRAY_EXT);

 Substitute "seven" for every occurence of "six" in the final
 paragraph on p. 27.

 - (2.12, p. 41) Add fog coordinate to the current rasterpos state.

 Change the first sentence of the first paragraph to read

 "The state required for the current raster position consists of
 three window coordinates x_w, y_w, and z_w, a clip coordinate
 w_c value, an eye coordinate distance, a fog coordinate, a valid
 bit, and associated data consisting of a color and texture
 coordinates."

 Change the last paragraph to read

 "The current raster position requires six single-precision
 floating-point values for its x_w, y_w, and z_w window
 coordinates, its w_c clip coordinate, its eye coordinate
 distance, and its fog coordinate, a single valid bit, a color
 (RGBA color and color index), and texture coordinates for
 associated data. In the initial state, the coordinates and
 texture coordinates are both (0,0,0,1), the fog coordinate is 0,
 the eye coordinate distance is 0, the valid bit is set, the
 associated RGBA color is (1,1,1,1), and the associated color
 index color is 1. In RGBA mode, the associated color index
 always has its initial value; in color index mode, the RGBA
 color always maintains its initial value."

 - (3.10, p. 139) Change the second and third paragraphs to read

 "This factor f may be computed according to one of three
 equations:"

 f = exp(-d*c) (3.24)
 f = exp(-(d*c)^2) (3.25)
 f = (e-c)/(e-s) (3.26)

 If the fog source (as defined below) is FRAGMENT_DEPTH_EXT, then
 c is the eye-coordinate distance from the eye, (0 0 0 1) in eye
 coordinates, to the fragment center. If the fog source is
 FOG_COORDINATE_EXT, then c is the interpolated value of the fog
 coordinate for this fragment. The equation and the fog source,
 along with either d or e and s, is specified with

 void Fog{if}(enum pname, T param);
 void Fog{if}v(enum pname, T params);

 If <pname> is FOG_MODE, then <param> must be, or <param> must
 point to an integer that is one of the symbolic constants EXP,
 EXP2, or LINEAR, in which case equation 3.24, 3.25, or 3.26,,
 respectively, is selected for the fog calculation (if, when 3.26
 is selected, e = s, results are undefined). If <pname> is
 FOG_COORDINATE_SOURCE_EXT, then <param> is or <params> points to

NVIDIA OpenGL Extension Specifications EXT_fog_coord

 27

 an integer that is one of the symbolic constants
 FRAGMENT_DEPTH_EXT or FOG_COORDINATE_EXT. If <pname> is
 FOG_DENSITY, FOG_START, or FOG_END, then <param> is or <params>
 points to a value that is d, s, or e, respectively. If d is
 specified less than zero, the error INVALID_VALUE results."

 - (3.10, p. 140) Change the last paragraph preceding section 3.11
 to read

 "The state required for fog consists of a three valued integer
 to select the fog equation, three floating-point values d, e,
 and s, an RGBA fog color and a fog color index, a two-valued
 integer to select the fog coordinate source, and a single bit to
 indicate whether or not fog is enabled. In the initial state,
 fog is disabled, FOG_COORDINATE_SOURCE_EXT is
 FRAGMENT_DEPTH_EXT, FOG_MODE is EXP, d = 1.0, e = 1.0, and s =
 0.0; C_f = (0,0,0,0) and i_f=0."

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 1.2 Specification (State and State
Requests)

 None

Additions to Appendix A of the OpenGL 1.2.1 Specification (Invariance)

 None

Additions to the GLX / WGL / AGL Specifications

 None

GLX Protocol

 Two new GL rendering commands are added. The following commands are
 sent to the server as part of a glXRender request:

 FogCoordfvEXT
 2 8 rendering command length
 2 4124 rendering command opcode
 4 FLOAT32 v[0]

EXT_fog_coord NVIDIA OpenGL Extension Specifications

 28

 FogCoorddvEXT
 2 12 rendering command length
 2 4125 rendering command opcode
 8 FLOAT64 v[0]

Errors

 INVALID_ENUM is generated if FogCoordPointerEXT parameter <type> is
 not FLOAT or DOUBLE.

 INVALID_VALUE is generated if FogCoordPointerEXT parameter <stride>
 is negative.

New State

(table 6.5, p. 195)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
CURRENT_FOG_COORDINATE_EXT R GetIntegerv, 0 Current 2.7 current
 GetFloatv fog coordinate

(table 6.6, p. 197)
 Initial
Get Value Type Get Command Value Description Sec Attribute
--------- ---- ----------- -------- ----------- --- ---------
FOG_COORDINATE_ARRAY_EXT B IsEnabled False Fog coord array enable 2.8 vertex-array
FOG_COORDINATE_ARRAY_TYPE_EXT Z8 GetIntegerv FLOAT Type of fog coordinate 2.8 vertex-array
FOG_COORDINATE_ARRAY_STRIDE_EXT Z+ GetIntegerv 0 Stride between fog coords 2.8 vertex-array
FOG_COORDINATE_ARRAY_POINTER_EXT Y GetPointerv 0 Pointer to the fog coord 2.8 vertex-array
 array

(table 6.8, p. 198)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
FOG_COORDINATE_SOURCE_EXT Z2 GetIntegerv, FRAGMENT_DEPTH_EXT Source of fog 3.10 fog
 GetFloatv coordinate for
 fog calculation

Revision History

 * Revision 1.6 - Functionality complete

 * Revision 1.7-1.9 - Fix typos and add fields to bring up to date with
 the new extension template. No functionality changes.

NVIDIA OpenGL Extension Specifications EXT_light_max_exponent

 29

Name

 EXT_light_max_exponent

Name Strings

 GL_EXT_light_max_exponent

Notice

 Copyright NVIDIA Corporation, 1999.

Version

 August 17, 1999

Dependencies

 None

Overview

 Default OpenGL does not permit a shininess or spot exponent over
 128.0. This extension permits implementations to support and
 advertise a maximum shininess and spot exponent beyond 128.0.

 Note that extremely high exponents for shininess and/or spot light
 cutoff will require sufficiently high tessellation for acceptable
 lighting results.

 Paul Deifenbach's thesis suggests that higher exponents are
 necessary to approximate BRDFs with per-vertex ligthing and
 multiple passes.

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_SHININESS_EXT 0x8507
 MAX_SPOT_EXPONENT_EXT 0x8508

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 In Table 2.7, change the srm range entry to read:

 "(range: [0.0, value of MAX_SHININESS_EXT])"

 In Table 2.7, change the srli range entry to read:

 "(range: [0.0, value of MAX_SPOT_EXPONENT_EXT])"

EXT_light_max_exponent NVIDIA OpenGL Extension Specifications

 30

 Add to the end of the second paragraph in Section 2.13.2:

 "The values of MAX_SHININESS_EXT and MAX_SPOT_EXPONENT_EXT are
 implementation dependent, but must be equal or greater than 128."

Additions to Chapter 3 of the GL Specification (Rasterization)

 None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 None.

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 INVALID_VALUE is generated by Material if enum is SHININESS and the
 shininess param is greater than the MAX_SHININESS_EXT.

 INVALID_VALUE is generated by Material if enum is SPOT_EXPONENT and
 the shininess param is greater than the MAX_SPOT_EXPONENT_EXT.

New State

 None.

New Implementation Dependent State

(table 6.24, p214) add the following entries:

 Minimum
Get Value Type Get Command Value Description Sec Attribute
---------------------- ---- ----------- -------- ---------------- ------- ---------
MAX_SHININESS_EXT Z+ GetIntegerv 128 Maximum 2.13.2 -
 shininess for
 specular lighting
MAX_SPOT_EXPONENT_EXT Z+ GetIntegerv 128 Maximum 2.13.2 -
 exponent for
 spot lights

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 31

Name

 EXT_packed_pixels

Name Strings

 GL_EXT_packed_pixels

Version

 $Date: 1997/09/22 23:23:58 $ $Revision: 1.21 $

Number

 23

Dependencies

 EXT_abgr affects the definition of this extension
 EXT_texture3D affects the definition of this extension
 EXT_subtexture affects the definition of this extension
 EXT_histogram affects the definition of this extension
 EXT_convolution affects the definition of this extension
 SGI_color_table affects the definition of this extension
 SGIS_texture4D affects the definition of this extension
 EXT_cmyka affects the definition of this extension

Overview

 This extension provides support for packed pixels in host memory. A
 packed pixel is represented entirely by one unsigned byte, one
 unsigned short, or one unsigned integer. The fields with the packed
 pixel are not proper machine types, but the pixel as a whole is. Thus
 the pixel storage modes, including PACK_SKIP_PIXELS, PACK_ROW_LENGTH,
 PACK_SKIP_ROWS, PACK_IMAGE_HEIGHT_EXT, PACK_SKIP_IMAGES_EXT,
 PACK_SWAP_BYTES, PACK_ALIGNMENT, and their unpacking counterparts all
 work correctly with packed pixels.

New Procedures and Functions

 None

New Tokens

 Accepted by the <type> parameter of DrawPixels, ReadPixels, TexImage1D,
 TexImage2D, GetTexImage, TexImage3DEXT, TexSubImage1DEXT,
 TexSubImage2DEXT, TexSubImage3DEXT, GetHistogramEXT, GetMinmaxEXT,
 ConvolutionFilter1DEXT, ConvolutionFilter2DEXT, ConvolutionFilter3DEXT,
 GetConvolutionFilterEXT, SeparableFilter2DEXT, SeparableFilter3DEXT,
 GetSeparableFilterEXT, ColorTableSGI, GetColorTableSGI, TexImage4DSGIS,
 and TexSubImage4DSGIS:

 UNSIGNED_BYTE_3_3_2_EXT 0x8032
 UNSIGNED_SHORT_4_4_4_4_EXT 0x8033
 UNSIGNED_SHORT_5_5_5_1_EXT 0x8034
 UNSIGNED_INT_8_8_8_8_EXT 0x8035
 UNSIGNED_INT_10_10_10_2_EXT 0x8036

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 32

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

 The five tokens defined by this extension are added to Table 3.4:

 <type> Parameter Corresponding Special
 Token Value GL Data Type Interpretation
 ---------------- ------------- --------------
 UNSIGNED_BYTE ubyte No
 BYTE byte No
 UNSIGNED_SHORT ushort No
 SHORT short No
 UNSIGNED_INT uint No
 INT int No
 FLOAT float No
 BITMAP ubyte Yes
 UNSIGNED_BYTE_3_3_2_EXT ubyte Yes
 UNSIGNED_SHORT_4_4_4_4_EXT ushort Yes
 UNSIGNED_SHORT_5_5_5_1_EXT ushort Yes
 UNSIGNED_INT_8_8_8_8_EXT uint Yes
 UNSIGNED_INT_10_10_10_2_EXT uint Yes

 Table 3.4: DrawPixels and ReadPixels <type> parameter values and the
 corresponding GL data types. Refer to table 2.2 for definitions of
 GL data types. Special interpretations are described near the end
 of section 3.6.3.

 [Section 3.6.3 of the GL Specification (Rasterization of Pixel
 Rectangles) is rewritten as follows:]

 3.6.3 Rasterization of Pixel Rectangles

 The process of drawing pixels encoded in host memory is diagrammed in
 Figure 3.7. We describe the stages of this process in the order in which
 they occur.

 Pixels are drawn using

 void DrawPixels(sizei width,
 sizei height,
 enum format,
 enum type,
 void* data);

 <format> is a symbolic constant indicating what the values in memory
 represent. <width> and <height> are the width and height, respectively,
 of the pixel rectangle to be drawn. <data> is a pointer to the data to
 be drawn. These data are represented with one of seven GL data types,
 specified by <type>. The correspondence between the thirteen <type>
 token values and the GL data types they indicate is given in Table 3.4.
 If the GL is in color index mode and <format> is not one of COLOR_INDEX,
 STENCIL_INDEX, or DEPTH_COMPONENT, then the error INVALID_OPERATION
 occurs. Some additional constraints on the combinations of <format>

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 33

 and <type> values that are accepted are discussed below.

 Unpacking

 Data are taken from host memory as a sequence of signed or unsigned bytes
 (GL data types byte and ubyte), signed or unsigned short integers (GL data
 types short and ushort), signed or unsigned integers (GL data types int
 and uint), or floating-point values (GL data type float). These elements
 are grouped into sets of one, two, three, four, or five values, depending
 on the <format>, to form a group. Table 3.5 summarizes the format of
 groups obtained from memory. It also indicates those formats that yield
 indices and those that yield components.

 Target
 Format Name Buffer Element Meaning and Order
 ----------- ------ -------------------------
 COLOR_INDEX Color Color index
 STENCIL_INDEX Stencil Stencil index
 DEPTH_COMPONENT Depth Depth component
 RED Color R component
 GREEN Color G component
 BLUE Color B component
 ALPHA Color A component
 RGB Color R, G, B components
 RGBA Color R, G, B, A components
 ABGR_EXT Color A, B, G, R components
 CMYK_EXT Color Cyan, Magenta, Yellow, Black components
 CMYKA_EXT Color Cyan, Magenta, Yellow, Black, A components
 LUMINANCE Color Luminance component
 LUMINANCE_ALPHA Color Luminance, A components

 Table 3.5: DrawPixels and ReadPixels formats. The third column
 gives a description of and the number and order of elements in a
 group.

 By default the values of each GL data type are interpreted as they would
 be specified in the language of the client's GL binding. If
 UNPACK_SWAP_BYTES is set to TRUE, however, then the values are
 interpreted with the bit orderings modified as per the table below. The
 modified bit orderings are defined only if the GL data type ubyte has
 eight bits, and then for each specific GL data type only if that type
 is represented with 8, 16, or 32 bits.

 Element Default
 Size Bit Ordering Modified Bit Ordering
 ------- ------------ ---------------------
 8-bit [7..0] [7..0]
 16-bit [15..0] [7..0] [15..8]
 32-bit [31..0] [7..0] [15..8] [23..16] [31..24]

 Table: Bit ordering modification of elements when UNPACK_SWAP_BYTES
 is TRUE. These reorderings are defined only when GL data type ubyte
 has 8 bits, and then only for GL data types with 8, 16, or 32 bits.

 The groups in memory are treated as being arranged in a rectangle. This
 rectangle consists of a series of rows, with the first element of the
 first group of the first row pointed to by the pointer passed to

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 34

 DrawPixels. If the value of UNPACK_ROW_LENGTH is not positive, then the
 number of groups in a row is <width>; otherwise the number of groups is
 UNPACK_ROW_LENGTH. If the first element of the first row is at location
 p in memory, then the location of the first element of the Nth row is

 p + Nk

 where N is the row number (counting from zero) and k is defined as

 / nl s >= a
 k = <
 \ a/s * ceiling(snl/a) s < a

 where n is the number of elements in a group, l is the number of groups
 in a row, a is the value of UNPACK_ALIGNMENT, and s is the size,
 in units of GL ubytes, of an element. If the number of bits per
 element is not 1, 2, 4, or 8 times the number of bits in a GL ubyte,
 then k = nl for all values of a.

 There is a mechanism for selecting a sub-rectangle of groups from a
 larger containing rectangle. This mechanism relies on three integer
 parameters: UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS.
 Before obtaining the first group from memory, the pointer supplied to
 DrawPixels is effectively advanced by

 UNPACK_SKIP_PIXELS * n + UNPACK_SKIP_ROWS * k

 elements. Then <width> groups are obtained from contiguous elements
 in memory (without advancing the pointer), after which the pointer is
 advanced by k elements. <height> sets of <width> groups of values are
 obtained this way. See Figure 3.8.

 Calling DrawPixels with a <type> of UNSIGNED_BYTE_3_3_2,
 UNSIGNED_SHORT_4_4_4_4, UNSIGNED_SHORT_5_5_5_1, UNSIGNED_INT_8_8_8_8,
 or UNSIGNED_INT_10_10_10_2 is a special case in which all the elements
 of each group are packed into a single unsigned byte, unsigned short,
 or unsigned int, depending on the type. The number of elements per
 packed pixel is fixed by the type, and must match the number of
 elements per group indicated by the <format> parameter. (See the table
 below.) The error INVALID_OPERATION is generated if a mismatch occurs.

 GL Number
 <type> Parameter Data of Matching
 Token Name Type Elements Pixel Formats
 ---------------- ---- -------- -------------
 UNSIGNED_BYTE_3_3_2_EXT ubyte 3 RGB
 UNSIGNED_SHORT_4_4_4_4_EXT ushort 4 RGBA,ABGR_EXT,CMYK_EXT
 UNSIGNED_SHORT_5_5_5_1_EXT ushort 4 RGBA,ABGR_EXT,CMYK_EXT
 UNSIGNED_INT_8_8_8_8_EXT uint 4 RGBA,ABGR_EXT,CMYK_EXT
 UNSIGNED_INT_10_10_10_2_EXT uint 4 RGBA,ABGR_EXT,CMYK_EXT

 Bitfield locations of the first, second, third, and fourth elements
 of each packed pixel type are illustrated in the diagrams below. Each
 bitfield is interpreted as an unsigned integer value. If the base GL
 type is supported with more than the minimum precision (e.g. a 9-bit
 byte) the packed elements are right-justified in the pixel.

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 35

 UNSIGNED_BYTE_3_3_2_EXT:

 7 6 5 4 3 2 1 0
 +-----------+-----------+-------+
 | | | |
 +-----------+-----------+-------+

 first second third
 element element element

 UNSIGNED_SHORT_4_4_4_4_EXT:

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +---------------+---------------+---------------+---------------+
 | | | | |
 +---------------+---------------+---------------+---------------+

 first second third fourth
 element element element element

 UNSIGNED_SHORT_5_5_5_1_EXT:

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +-------------------+-------------------+-------------------+---+
 | | | | |
 +-------------------+-------------------+-------------------+---+

 first second third fourth
 element element element element

 UNSIGNED_INT_8_8_8_8_EXT:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +-----------------------+-----------------------+-----------------------+-----------------------+
 | | | | |
 +-----------------------+-----------------------+-----------------------+-----------------------+

 first second third fourth
 element element element element

 UNSIGNED_INT_10_10_10_2_EXT:

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 +-----------------------------+-----------------------------+-----------------------------+-----+
 | | | | |
 +-----------------------------+-----------------------------+-----------------------------+-----+

 first second third fourth
 element element element element

 The assignment of elements to fields in the packed pixel is as
 described in the table below:

 First Second Third Fourth
 Format Element Element Element Element
 ------ ------- ------- ------- -------
 RGB red green blue
 RGBA red green blue alpha
 ABGR_EXT alpha blue green red
 CMYK_EXT cyan magenta yellow black

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 36

 Byte swapping, if enabled, is performed before the elements are
 extracted from each pixel. The above discussions of row length and
 image extraction are valid for packed pixels, if "group" is substituted
 for "element" and the number of elements per group is understood to
 be one.

 Calling DrawPixels with a <type> of BITMAP is a special case in which
 the data are a series of GL ubyte values. Each ubyte value specifies
 8 1-bit elements with its 8 least-significant bits. The 8 single-bit
 elements are ordered from most significant to least significant if the
 value of UNPACK_LSB_FIRST is FALSE; otherwise, the ordering is from
 least significant to most significant. The values of bits other than
 the 8 least significant in each ubyte are not significant.

 The first element of the first row is the first bit (as defined above)
 of the ubyte pointed to by the pointer passed to DrawPixels. The first
 element of the second row is the first bit (again as defined above) of
 the ubyte at location p+k, where k is computed as

 k = a * ceiling(nl/8a)

 There is a mechanism for selecting a sub-rectangle of elements from
 a BITMAP image as well. Before obtaining the first element from memory,
 the pointer supplied to DrawPixels is effectively advanced by

 UNPACK_SKIP_ROWS * k

 ubytes. Then UNPACK_SKIP_PIXELS 1-bit elements are ignored, and the
 subsequent <width> 1-bit elements are obtained, without advancing the
 ubyte pointer, after which the pointer is advanced by k ubytes. <height>
 sets of <width> elements are obtained this way.

 Conversion to floating-point

 This step applies only to groups of components. It is not performed on
 indices. Each element in a group is converted to a floating-point value
 according to the appropriate formula in Table 2.4 (section 2.12).
 Unsigned integer bitfields extracted from packed pixels are interpreted
 using the formula

 f = c / ((2**N)-1)

 where c is the value of the bitfield (interpreted as an unsigned
 integer), N is the number of bits in the bitfield, and the division is
 performed in floating point.

 [End of changes to Section 3.6.3]

 If this extension is supported, all commands that accept pixel data
 also accept packed pixel data. These commands are DrawPixels,
 TexImage1D, TexImage2D, TexImage3DEXT, TexSubImage1DEXT,
 TexSubImage2DEXT, TexSubImage3DEXT, ConvolutionFilter1DEXT,
 ConvolutionFilter2DEXT, ConvolutionFilter3DEXT, SeparableFilter2DEXT,
 SeparableFilter3DEXT, ColorTableSGI, TexImage4DSGIS, and
 TexSubImage4DSGIS.

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 37

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Framebuffer)

 [Make the following changes to Section 4.3.2 (Reading Pixels):]

 Final Conversion

 For an index, if the <type> is not FLOAT, final conversion consists of
 masking the index with the value given in Table 4.6; if the <type> is
 FLOAT, then the integer index is converted to a GL float data value.
 For a component, each component is first clamped to [0,1]. Then,
 the appropriate conversion formula from Table 4.7 is applied to the
 component.

 <type> Parameter Index Mask
 ---------------- ----------
 UNSIGNED_BYTE 2**8 - 1
 BITMAP 1
 BYTE 2**7 - 1
 UNSIGNED_SHORT 2**16 - 1
 SHORT 2**15 - 1
 UNSIGNED_INT 2**32 - 1
 INT 2**31 - 1

 Table 4.6: Index masks used by ReadPixels. Floating point data
 are not masked.

 <type> GL Data Component
 Parameter Type Conversion Formula
 --------- ------- ------------------
 UNSIGNED_BYTE ubyte c = ((2**8)-1)*f
 BYTE byte c = (((2**8)-1)*f-1)/2
 UNSIGNED_SHORT ushort c = ((2**16)-1)*f
 SHORT short c = (((2**16)-1)*f-1)/2
 UNSIGNED_INT uint c = ((2**32)-1)*f
 INT int c = (((2**32)-1)*f-1)/2
 FLOAT float c = f
 UNSIGNED_BYTE_3_3_2_EXT ubyte c = ((2**N)-1)*f
 UNSIGNED_SHORT_4_4_4_4_EXT ushort c = ((2**N)-1)*f
 UNSIGNED_SHORT_5_5_5_1_EXT ushort c = ((2**N)-1)*f
 UNSIGNED_INT_8_8_8_8_EXT uint c = ((2**N)-1)*f
 UNSIGNED_INT_10_10_10_2_EXT uint c = ((2**N)-1)*f

 Table 4.7: Reversed component conversions - used when component data
 are being returned to client memory. Color, normal, and depth
 components are converted from the internal floating-point
 representation (f) to a datum of the specified GL data type (c) using
 the equations in this table. All arithmetic is done in the internal
 floating point format. These conversions apply to component data
 returned by GL query commands and to components of pixel data returned
 to client memory. The equations remain the same even if the
 implemented ranges of the GL data types are greater than the minimum
 required ranges. (Refer to table 2.2.) Equations with N as the
 exponent are performed for each bitfield of the packed data type,
 with N set to the number of bits in the bitfield.

EXT_packed_pixels NVIDIA OpenGL Extension Specifications

 38

 Placement in Client Memory

 Groups of elements are placed in memory just as they are taken from memory
 for DrawPixels. That is, the ith group of the jth row (corresponding to
 the ith pixel in the jth row) is placed in memory must where the ith group
 of the jth row would be taken from for DrawPixels. See Unpacking under
 section 3.6.3. The only difference is that the storage mode parameters
 whose names begin with PACK_ are used instead of those whose names begin
 with UNPACK_.

 [End of changes to Section 4.3.2]

 If this extension is supported, all commands that return pixel data
 also return packed pixel data. These commands are ReadPixels,
 GetTexImage, GetHistogramEXT, GetMinmaxEXT, GetConvolutionFilterEXT,
 GetSeparableFilterEXT, and GetColorTableSGI.

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Dependencies on EXT_abgr

 If EXT_abgr is not implemented, then the references to ABGR_EXT in this
 file are invalid, and should be ignored.

Dependencies on EXT_texture3D

 If EXT_texture3D is not implemented, then the references to
 TexImage3DEXT in this file are invalid, and should be ignored.

Dependencies on EXT_subtexture

 If EXT_subtexture is not implemented, then the references to
 TexSubImage1DEXT, TexSubImage2DEXT, and TexSubImage3DEXT in this file
 are invalid, and should be ignored.

Dependencies on EXT_histogram

 If EXT_histogram is not implemented, then the references to
 GetHistogramEXT and GetMinmaxEXT in this file are invalid, and should be
 ignored.

Dependencies on EXT_convolution

NVIDIA OpenGL Extension Specifications EXT_packed_pixels

 39

 If EXT_convolution is not implemented, then the references to
 ConvolutionFilter1DEXT, ConvolutionFilter2DEXT, ConvolutionFilter3DEXT,
 GetConvolutionFilterEXT, SeparableFilter2DEXT, SeparableFilter3DEXT, and
 GetSeparableFilterEXT in this file are invalid, and should be ignored.

Dependencies on SGI_color_table

 If SGI_color_table is not implemented, then the references to
 ColorTableSGI and GetColorTableSGI in this file are invalid, and should
 be ignored.

Dependencies on SGIS_texture4D

 If SGIS_texture4D is not implemented, then the references to
 TexImage4DSGIS and TexSubImage4DSGIS in this file are invalid, and should
 be ignored.

Dependencies on EXT_cmyka

 If EXT_cmyka is not implemented, then the references to CMYK_EXT and
 CMYKA_EXT in this file are invalid, and should be ignored.

Errors

 [For the purpose of this enumeration of errors, GenericPixelFunction
 represents any OpenGL function that accepts or returns pixel data, using
 parameters <type> and <format> to define the type and format of that
 data. Currently these functions are DrawPixels, ReadPixels, TexImage1D,
 TexImage2D, GetTexImage, TexImage3DEXT, TexSubImage1DEXT,
 TexSubImage2DEXT, TexSubImage3DEXT, GetHistogramEXT, GetMinmaxEXT,
 ConvolutionFilter1DEXT, ConvolutionFilter2DEXT, ConvolutionFilter3DEXT,
 GetConvolutionFilterEXT, SeparableFilter2DEXT, SeparableFilter3DEXT,
 GetSeparableFilterEXT, ColorTableSGI, GetColorTableSGI, TexImage4DSGIS,
 and TexSubImage4DSGIS.]

 INVALID_OPERATION is generated by GenericPixelFunction if its <type>
 parameter is UNSIGNED_BYTE_3_3_2_EXT and its <format> parameter does not
 specify three components. Currently the only 3-component format is RGB.

 INVALID_OPERATION is generated by GenericPixelFunction if its <type>
 parameter is UNSIGNED_SHORT_4_4_4_4_EXT, UNSIGNED_SHORT_5_5_5_1_EXT,
 UNSIGNED_INT_8_8_8_8_EXT, or UNSIGNED_INT_10_10_10_2_EXT and its
 <format> parameter does not specify four components. Currently the only
 4-component formats are RGBA, ABGR_EXT, and CMYK_EXT.

New State

 None

New Implementation Dependent State

 None

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 40

Name

 EXT_paletted_texture

Name Strings

 GL_EXT_paletted_texture

Version

 $Date: 1997/06/12 01:07:42 $ $Revision: 1.2 $

Number

 78

Dependencies

 GL_EXT_paletted_texture shares routines and enumerants with
 GL_SGI_color_table with the minor modification that EXT replaces SGI.
 In all other ways these calls should function in the same manner and the
 enumerant values should be identical. The portions of
 GL_SGI_color_table that are used are:

 ColorTableSGI, GetColorTableSGI, GetColorTableParameterivSGI,
 GetColorTableParameterfvSGI.
 COLOR_TABLE_FORMAT_SGI, COLOR_TABLE_WIDTH_SGI,
 COLOR_TABLE_RED_SIZE_SGI, COLOR_TABLE_GREEN_SIZE_SGI,
 COLOR_TABLE_BLUE_SIZE_SGI, COLOR_TABLE_ALPHA_SIZE_SGI,
 COLOR_TABLE_LUMINANCE_SIZE_SGI, COLOR_TABLE_INTENSITY_SIZE_SGI.

 Portions of GL_SGI_color_table which are not used in
 GL_EXT_paletted_texture are:

 CopyColorTableSGI, ColorTableParameterivSGI,
 ColorTableParameterfvSGI.
 COLOR_TABLE_SGI, POST_CONVOLUTION_COLOR_TABLE_SGI,
 POST_COLOR_MATRIX_COLOR_TABLE_SGI, PROXY_COLOR_TABLE_SGI,
 PROXY_POST_CONVOLUTION_COLOR_TABLE_SGI,
 PROXY_POST_COLOR_MATRIX_COLOR_TABLE_SGI, COLOR_TABLE_SCALE_SGI,
 COLOR_TABLE_BIAS_SGI.

 EXT_paletted_texture can be used in conjunction with EXT_texture3D.
 EXT_paletted_texture modifies TexImage3DEXT to accept paletted image
 data and allows TEXTURE_3D_EXT and PROXY_TEXTURE_3D_EXT to be used a
 targets in the color table routines. If EXT_texture3D is unsupported
 then references to 3D texture support in this spec are invalid and
 should be ignored.

Overview

 EXT_paletted_texture defines new texture formats and new calls to
 support the use of paletted textures in OpenGL. A paletted texture is
 defined by giving both a palette of colors and a set of image data which
 is composed of indices into the palette. The paletted texture cannot
 function properly without both pieces of information so it increases the
 work required to define a texture. This is offset by the fact that the

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 41

 overall amount of texture data can be reduced dramatically by factoring
 redundant information out of the logical view of the texture and placing
 it in the palette.

 Paletted textures provide several advantages over full-color textures:

 * As mentioned above, the amount of data required to define a
 texture can be greatly reduced over what would be needed for full-color
 specification. For example, consider a source texture that has only 256
 distinct colors in a 256 by 256 pixel grid. Full-color representation
 requires three bytes per pixel, taking 192K of texture data. By putting
 the distinct colors in a palette only eight bits are required per pixel,
 reducing the 192K to 64K plus 768 bytes for the palette. Now add an
 alpha channel to the texture. The full-color representation increases
 by 64K while the paletted version would only increase by 256 bytes.
 This reduction in space required is particularly important for hardware
 accelerators where texture space is limited.

 * Paletted textures allow easy reuse of texture data for images
 which require many similar but slightly different colored objects.
 Consider a driving simulation with heavy traffic on the road. Many of
 the cars will be similar but with different color schemes. If
 full-color textures are used a separate texture would be needed for each
 color scheme, while paletted textures allow the same basic index data to
 be reused for each car, with a different palette to change the final
 colors.

 * Paletted textures also allow use of all the palette tricks
 developed for paletted displays. Simple animation can be done, along
 with strobing, glowing and other palette-cycling effects. All of these
 techniques can enhance the visual richness of a scene with very little
 data.

New Procedures and Functions

 void ColorTableEXT(
 enum target,
 enum internalFormat,
 sizei width,
 enum format,
 enum type,
 const void *data);

 void ColorSubTableEXT(
 enum target,
 sizei start,
 sizei count,
 enum format,
 enum type,
 const void *data);

 void GetColorTableEXT(
 enum target,
 enum format,
 enum type,
 void *data);

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 42

 void GetColorTableParameterivEXT(
 enum target,
 enum pname,
 int *params);

 void GetColorTableParameterfvEXT(
 enum target,
 enum pname,
 float *params);

New Tokens

 Accepted by the internalformat parameter of TexImage1D, TexImage2D and
 TexImage3DEXT:
 COLOR_INDEX1_EXT 0x80E2
 COLOR_INDEX2_EXT 0x80E3
 COLOR_INDEX4_EXT 0x80E4
 COLOR_INDEX8_EXT 0x80E5
 COLOR_INDEX12_EXT 0x80E6
 COLOR_INDEX16_EXT 0x80E7

 Accepted by the pname parameter of GetColorTableParameterivEXT and
 GetColorTableParameterfvEXT:
 COLOR_TABLE_FORMAT_EXT 0x80D8
 COLOR_TABLE_WIDTH_EXT 0x80D9
 COLOR_TABLE_RED_SIZE_EXT 0x80DA
 COLOR_TABLE_GREEN_SIZE_EXT 0x80DB
 COLOR_TABLE_BLUE_SIZE_EXT 0x80DC
 COLOR_TABLE_ALPHA_SIZE_EXT 0x80DD
 COLOR_TABLE_LUMINANCE_SIZE_EXT 0x80DE
 COLOR_TABLE_INTENSITY_SIZE_EXT 0x80DF

 Accepted by the value parameter of GetTexLevelParameter{if}v:
 TEXTURE_INDEX_SIZE_EXT 0x80ED

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

 Section 3.6.4, 'Pixel Transfer Operations,' subsection 'Color Index
 Lookup,'

 Point two is modified from 'The groups will be loaded as an
 image into texture memory' to 'The groups will be loaded as an image
 into texture memory and the internalformat parameter is not one of the
 color index formats from table 3.8.'

 Section 3.8, 'Texturing,' subsection 'Texture Image Specification' is
 modified as follows:

 The portion of the first paragraph discussing interpretation of format,
 type and data is split from the portion discussing target, width and
 height. The target, width and height section now ends with the sentence
 'Arguments width and height specify the image's width and height.'

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 43

 The format, type and data section is moved under a subheader 'Direct
 Color Texture Formats' and begins with 'If internalformat is not one of
 the color index formats from table 3.8,' and continues with the existing
 text through the internalformat discussion.

 After that section, a new section 'Paletted Texture Formats' has the
 text:

 If format is given as COLOR_INDEX then the image data is
 composed of integer values representing indices into a table of colors
 rather than colors themselves. If internalformat is given as one of the
 color index formats from table 3.8 then the texture will be stored
 internally as indices rather than undergoing index-to-RGBA mapping as
 would previously have occurred. In this case the only valid values for
 type are BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT and
 UNSIGNED_INT.

 The image data is unpacked from memory exactly as for a
 DrawPixels command with format of COLOR_INDEX for a context in color
 index mode. The data is then stored in an internal format derived from
 internalformat. In this case the only legal values of internalformat
 are COLOR_INDEX1_EXT, COLOR_INDEX2_EXT, COLOR_INDEX4_EXT,
 COLOR_INDEX8_EXT, COLOR_INDEX12_EXT and COLOR_INDEX16_EXT and the
 internal component resolution is picked according to the index
 resolution specified by internalformat. Any excess precision in the
 data is silently truncated to fit in the internal component precision.

 An application can determine whether a particular
 implementation supports a particular paletted format (or any paletted
 formats at all) by attempting to use the paletted format with a proxy
 target. TEXTURE_INDEX_SIZE_EXT will be zero if the implementation
 cannot support the texture as given.

 An application can determine an implementation's desired
 format for a particular paletted texture by making a TexImage call with
 COLOR_INDEX as the internalformat, in which case target must be a proxy
 target. After the call the application can query
 TEXTURE_INTERNAL_FORMAT to determine what internal format the
 implementation suggests for the texture image parameters.
 TEXTURE_INDEX_SIZE_EXT can be queried after such a call to determine the
 suggested index resolution numerically. The index resolution suggested
 by the implementation does not have to be as large as the input data
 precision. The resolution may also be zero if the implementation is
 unable to support any paletted format for the given texture image.

 Table 3.8 should be augmented with a column titled 'Index bits.' All
 existing formats have zero index bits. The following formats are added
 with zeroes in all existing columns:

 Name Index bits
 COLOR_INDEX1_EXT 1
 COLOR_INDEX2_EXT 2
 COLOR_INDEX4_EXT 4
 COLOR_INDEX8_EXT 8
 COLOR_INDEX12_EXT 12
 COLOR_INDEX16_EXT 16

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 44

 At the end of the discussion of level the following text should be
 added:

 All mipmapping levels share the same palette. If levels
 are created with different precision indices then their internal formats
 will not match and the texture will be inconsistent, as discussed above.

 In the discussion of internalformat for CopyTexImage{12}D, at end of the
 sentence specifying that 1, 2, 3 and 4 are illegal there should also be
 a mention that paletted internalformat values are illegal.

 At the end of the width, height, format, type and data section under
 TexSubImage there should be an additional sentence:

 If the target texture has an color index internal format
 then format may only be COLOR_INDEX.

 At the end of the first paragraph describing TexSubImage and
 CopyTexSubImage the following sentence should be added:

 If the target of a CopyTexSubImage is a paletted texture
 image then INVALID_OPERATION is returned.

 After the Alternate Image Specification Commands section, a new 'Palette
 Specification Commands' section should be added.

 Paletted textures require palette information to
 translate indices into full colors. The command

 void ColorTableEXT(enum target, enum internalformat, sizei width,
 enum format, enum type, const void *data);

 is used to specify the format and size of the palette
 for paletted textures. target specifies which texture is to have its
 palette changed and may be one of TEXTURE_1D, TEXTURE_2D,
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3D_EXT or
 PROXY_TEXTURE_3D_EXT. internalformat specifies the desired format and
 resolution of the palette when in its internal form. internalformat can
 be any of the non-index values legal for TexImage internalformat
 although implementations are not required to support palettes of all
 possible formats. width controls the size of the palette and must be a
 power of two greater than or equal to one. format and type specify the
 number of components and type of the data given by data. format can be
 any of the formats legal for DrawPixels although implementations are not
 required to support all possible formats. type can be any of the types
 legal for DrawPixels except GL_BITMAP.

 Data is taken from memory and converted just as if each
 palette entry were a single pixel of a 1D texture. Pixel unpacking and
 transfer modes apply just as with texture data. After unpacking and
 conversion the data is translated into a internal format that matches
 the given format as closely as possible. An implementation does not,
 however, have a responsibility to support more than one precision for
 the base formats.

 If the palette's width is greater than than the range of
 the color indices in the texture data then some of the palettes entries

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 45

 will be unused. If the palette's width is less than the range of the
 color indices in the texture data then the most-significant bits of the
 texture data are ignored and only the appropriate number of bits of the
 index are used when accessing the palette.

 Specifying a proxy target causes the proxy texture's
 palette to be resized and its parameters set but no data is transferred
 or accessed. If an implementation cannot handle the palette data given
 in the call then the color table width and component resolutions are set
 to zero.

 Portions of the current palette can be replaced with

 void ColorSubTableEXT(enum target, sizei start, sizei count,
 enum format, enum type, const void *data);

 target can be any of the non-proxy values legal for
 ColorTableEXT. start and count control which entries of the palette are
 changed out of the range allowed by the internal format used for the
 palette indices. count is silently clamped so that all modified entries
 all within the legal range. format and type can be any of the values
 legal for ColorTableEXT. The data is treated as a 1D texture just as in
 ColorTableEXT.

 In the 'Texture State and Proxy State' section the sentence fragment
 beginning 'six integer values describing the resolutions...' should be
 changed to refer to seven integer values, with the seventh being the
 index resolution.

 Palette data should be added in as a third category of texture state.

 After the discussion of properties, the following should be added:

 Next there is the texture palette. All textures have a
 palette, even if their internal format is not color index. A texture's
 palette is initially one RGBA element with all four components set to
 1.0.

 The sentence mentioning that proxies do not have image data or
 properties should be extended with 'or palettes.'

 The sentence beginning 'If the texture array is too large' describing
 the effects of proxy failure should change to read:

 If the implementation is unable to handle the texture
 image data the proxy width, height, border width and component
 resolutions are set to zero. This situation can occur when the texture
 array is too large or an unsupported paletted format was requested.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

EXT_paletted_texture NVIDIA OpenGL Extension Specifications

 46

Additions to Chapter 6 of the GL Specification (State and State
Requests)

 In the section on GetTexImage, the sentence saying 'The components are
 assigned among R, G, B and A according to' should be changed to be

 If the internal format of the texture is not a color
 index format then the components are assigned among R, G, B, and A
 according to Table 6.1. Specifying COLOR_INDEX for format in this case
 will generate the error INVALID_ENUM. If the internal format of the
 texture is color index then the components are handled in one of two
 ways depending on the value of format. If format is not COLOR_INDEX,
 the texture's indices are passed through the texture's palette and the
 resulting components are assigned among R, G, B, and A according to
 Table 6.1. If format is COLOR_INDEX then the data is treated as single
 components and the palette indices are returned. Components are taken
 starting...

 Following the GetTexImage section there should be a new section:

 GetColorTableEXT is used to get the current texture palette.

 void GetColorTableEXT(enum target, enum format, enum type, void *data);

 GetColorTableEXT retrieves the texture palette of the
 texture given by target. target can be any of the non-proxy targets
 valid for ColorTableEXT. format and type are interpreted just as for
 ColorTableEXT. All textures have a palette by default so
 GetColorTableEXT will always be able to return data even if the internal
 format of the texture is not a color index format.

 Palette parameters can be retrieved using

 void GetColorTableParameterivEXT(enum target, enum pname, int *params);
 void GetColorTableParameterfvEXT(enum target, enum pname, float *params);

 target specifies the texture being queried and pname
 controls which parameter value is returned. Data is returned in the
 memory pointed to by params.

 Querying COLOR_TABLE_FORMAT_EXT returns the internal
 format requested by the most recent ColorTableEXT call or the default.
 COLOR_TABLE_WIDTH_EXT returns the width of the current palette.
 COLOR_TABLE_RED_SIZE_EXT, COLOR_TABLE_GREEN_SIZE_EXT,
 COLOR_TABLE_BLUE_SIZE_EXT and COLOR_TABLE_ALPHA_SIZE_EXT return the
 actual size of the components used to store the palette data internally,
 not the size requested when the palette was defined.

 Table 6.11, "Texture Objects" should have a line appended for
 TEXTURE_INDEX_SIZE_EXT:

TEXTURE_INDEX_SIZE_EXT n x Z+ GetTexLevelParameter 0 xD texture image i's index resolution 3.8 -

NVIDIA OpenGL Extension Specifications EXT_paletted_texture

 47

Revision History

Original draft, revision 0.5, December 20, 1995 (drewb) Created

Minor revisions and clarifications, revision 0.6, January 2, 1996 (drewb)
 Replaced all request-for-comment blocks with final text
 based on implementation.

Minor revisions and clarifications, revision 0.7, Feburary 5, 1996 (drewb)
 Specified the state of the palette color information
 when existing data is replaced by new data.

 Clarified behavior of TexPalette on inconsistent textures.

Major changes due to ARB review, revision 0.8, March 1, 1996 (drewb)
 Switched from using TexPaletteEXT and GetTexPaletteEXT
 to using SGI's ColorTableEXT routines. Added ColorSubTableEXT so
 equivalent functionality is available.

 Allowed proxies in all targets.

 Changed PALETTE?_EXT values to COLOR_INDEX?_EXT. Added
 support for one and two bit palettes. Removed PALETTE_INDEX_EXT in
 favor of COLOR_INDEX.

 Decoupled palette size from texture data type. Palette
 size is controlled only by ColorTableEXT.

Changes due to ARB review, revision 1.0, May 23, 1997 (drewb)
 Mentioned texture3D.

 Defined TEXTURE_INDEX_SIZE_EXT.

 Allowed implementations to return an index size of zero to indicate
 no support for a particular format.

 Allowed usage of GL_COLOR_INDEX as a generic format in
 proxy queries for determining an optimal index size for a particular
 texture.

 Disallowed CopyTexImage and CopyTexSubImage to paletted
 formats.

 Deleted mention of index transfer operations during GetTexImage with
 paletted formats.

EXT_point_parameters NVIDIA OpenGL Extension Specifications

 48

Name

 EXT_point_parameters

Name Strings

 GL_EXT_point_parameters

Version

 $Date: 1997/08/21 21:26:36 $ $Revision: 1.6 $

Number

 54

Dependencies

 SGIS_multisample affects the definition of this extension.

Overview

 This extension supports additional geometric characteristics of points. It
 can be used to render particles or tiny light sources, commonly referred
 as "Light points".

 The raster brightness of a point is a function of the point area, point
 color, point transparency, and the response of the display's electron gun
 and phosphor. The point area and the point transparency are derived from the
 point size, currently provided with the <size> parameter of glPointSize.

 The primary motivation is to allow the size of a point to be affected by
 distance attenuation. When distance attenuation has an effect, the final
 point size decreases as the distance of the point from the eye increases.

 The secondary motivation is a mean to control the mapping from the point
 size to the raster point area and point transparency. This is done in order
 to increase the dynamic range of the raster brightness of points. In other
 words, the alpha component of a point may be decreased (and its transparency
 increased) as its area shrinks below a defined threshold.

 This extension defines a derived point size to be closely related to point
 brightness. The brightness of a point is given by:

 1
 dist_atten(d) = -------------------
 a + b * d + c * d^2

 brightness(Pe) = Brightness * dist_atten(|Pe|)

 where 'Pe' is the point in eye coordinates, and 'Brightness' is some initial
 value proportional to the square of the size provided with glPointSize. Here
 we simplify the raster brightness to be a function of the rasterized point
 area and point transparency.

NVIDIA OpenGL Extension Specifications EXT_point_parameters

 49

 brightness(Pe) brightness(Pe) >= Threshold_Area
 area(Pe) =
 Threshold_Area Otherwise

 factor(Pe) = brightness(Pe)/Threshold_Area

 alpha(Pe) = Alpha * factor(Pe)

 where 'Alpha' comes with the point color (possibly modified by lighting).

 'Threshold_Area' above is in area units. Thus, it is proportional to the
 square of the threshold provided by the programmer through this extension.

 The new point size derivation method applies to all points, while the
 threshold applies to multisample points only.

Issues

 * Does point alpha modification affect the current color ?

 No.

 * Do we need a special function glGetPointParameterfvEXT, or
 get by with glGetFloat ?

 No.

 * If alpha is 0, then we could toss the point before it reaches the
 fragment stage.

 No. This can be achieved with enabling the alpha test with reference of
 0 and function of LEQUAL.

 * Do we need a disable for applying the threshold ?

 The default threshold value is 1.0. It is applied even if the point size
 is constant.

 If the default threshold is not overriden, the area of multisample
 points with provided constant size of less than 1.0, is mapped to 1.0,
 while the alpha component is modulated accordingly, to compensate for
 the larger area. For multisample points this is not a problem, as there
 are no relevant applications yet. As mentioned above, the threshold does
 not apply to alias or antialias points.

 The alternative is to have a disable of threshold application, and state
 that threshold (if not disabled) applies to non antialias points only
 (that is, alias and multisample points).

 The behavior without an enable/disable looks fine.

 * Future extensions (to the extension)

 1. GL_POINT_FADE_ALPHA_CLAMP_EXT

 When the derived point size is larger than the threshold size defined by
 the GL_POINT_FADE_THRESHOLD_SIZE_EXT parameter, it might be desired to

EXT_point_parameters NVIDIA OpenGL Extension Specifications

 50

 clamp the computed alpha to a minimum value, in order to keep the point
 visible. In this case the formula below change:

 factor = (derived_size/threshold)^2

 factor clamp <= factor
 clamped_value =
 clamp factor < clamp

 1.0 derived_size >= threshold
 alpha *=
 clamped_value Otherwise

 where clamp is defined by the GL_POINT_FADE_ALPHA_CLAMP_EXT new parameter.

New Procedures and Functions

 void glPointParameterfEXT (GLenum pname, GLfloat param);
 void glPointParameterfvEXT (GLenum pname, GLfloat *params);

New Tokens

 Accepted by the <pname> parameter of glPointParameterfEXT, and the <pname>
 of glGet:

 GL_POINT_SIZE_MIN_EXT
 GL_POINT_SIZE_MAX_EXT
 GL_POINT_FADE_THRESHOLD_SIZE_EXT

 Accepted by the <pname> parameter of glPointParameterfvEXT, and the <pname>
 of glGet:

 GL_POINT_SIZE_MIN_EXT 0x8126
 GL_POINT_SIZE_MAX_EXT 0x8127
 GL_POINT_FADE_THRESHOLD_SIZE_EXT 0x8128
 GL_DISTANCE_ATTENUATION_EXT 0x8129

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

 All parameters of the glPointParameterfEXT and glPointParameterfvEXT
 functions set various values applied to point rendering. The derived point
 size is defined to be the <size> provided with glPointSize modulated with a
 distance attenuation factor.

 The parameters GL_POINT_SIZE_MIN_EXT and GL_POINT_SIZE_MAX_EXT simply
 define an upper and lower bounds respectively on the derived point size.

 The above parameters affect non multisample points as well as multisample
 points, while the GL_POINT_FADE_THRESHOLD_SIZE_EXT parameter, has no effect
 on non multisample points. If the derived point size is larger than
 the threshold size defined by the GL_POINT_FADE_THRESHOLD_SIZE_EXT
 parameter, the derived point size is used as the diameter of the rasterized
 point, and the alpha component is intact. Otherwise, the threshold size is

NVIDIA OpenGL Extension Specifications EXT_point_parameters

 51

 set to be the diameter of the rasterized point, while the alpha component is
 modulated accordingly, to compensate for the larger area.

 The distance attenuation function coefficients, namely a, b, and c in:

 1
 dist_atten(d) = -------------------
 a + b * d + c * d^2

 are defined by the <pname> parameter GL_DISTANCE_ATTENUATION_EXT of the
 function glPointParameterfvEXT. By default a = 1, b = 0, and c = 0.

 Let 'size' be the point size provided with glPointSize, let 'dist' be the
 distance of the point from the eye, and let 'threshold' be the threshold
 size defined by the GL_POINT_FADE_THRESHOLD_SIZE parameter of
 glPointParameterfEXT. The derived point size is given by:

 derived_size = size * sqrt(dist_atten(dist))

 Note that when default values are used, the above formula reduces to:

 derived_size = size

 the diameter of the rasterized point is given by:

 derived_size derived_size >= threshold
 diameter =
 threshold Otherwise

 The alpha of a point is calculated to allow the fading of points instead of
 shrinking them past a defined threshold size. The alpha component of the
 rasterized point is given by:

 1 derived_size >= threshold
 alpha *=
 (derived_size/threshold)^2 Otherwise

 The threshold defined by GL_POINT_FADE_THRESHOLD_SIZE_EXT is not clamped
 to the minimum and maximum point sizes.

 Points do not affect the current color.

 This extension doesn't change the feedback or selection behavior of points.

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

 None

EXT_point_parameters NVIDIA OpenGL Extension Specifications

 52

Additions to the GLX Specification

 None

Dependencies on SGIS_multisample

 If SGIS_multisample is not implemented, then the references to
 multisample points are invalid, and should be ignored.

Errors

 INVALID_ENUM is generated if PointParameterfEXT parameter <pname> is not
 GL_POINT_SIZE_MIN_EXT, GL_POINT_SIZE_MAX_EXT, or
 GL_POINT_FADE_THRESHOLD_SIZE_EXT.

 INVALID_ENUM is generated if PointParameterfvEXT parameter <pname> is
 not GL_POINT_SIZE_MIN_EXT, GL_POINT_SIZE_MAX_EXT,
 GL_POINT_FADE_THRESHOLD_SIZE_EXT, or GL_DISTANCE_ATTENUATION_EXT

 INVALID_VALUE is generated when values are out of range according to:

 <pname> valid range
 -------- -----------
 GL_POINT_SIZE_MIN_EXT >= 0
 GL_POINT_SIZE_MAX_EXT >= 0
 GL_POINT_FADE_THRESHOLD_SIZE_EXT >= 0

 Issues

 - should we generate INVALID_VALUE or just clamp?

New State

 Initial
Get Value Get Command Type Value Attribute
--------- ----------- ---- --------- ---------
GL_POINT_SIZE_MIN_EXT GetFloatv R 0 point
GL_POINT_SIZE_MAX_EXT GetFloatv R M point
GL_POINT_FADE_THRESHOLD_SIZE_EXT GetFloatv R 1 point
GL_DISTANCE_ATTENUATION_EXT GetFloatv 3xR (1,0,0) point

M is the largest available point size.

New Implementation Dependent State

 None

Backwards Compatibility

 This extension replaces SGIS_point_parameters. The procedures, tokens,
 and name strings now refer to EXT instead of SGIS. Enumerant values are
 unchanged. SGI implementations which previously provided this
 functionality should support both forms of the extension.

NVIDIA OpenGL Extension Specifications EXT_rescale_normal

 53

Name

 EXT_rescale_normal

Name Strings

 GL_EXT_rescale_normal

Version

 $Date: 1997/07/02 23:38:17 $ $Revision: 1.7 $

Number

 27

Dependencies

 None

Overview

 When normal rescaling is enabled a new operation is added to the
 transformation of the normal vector into eye coordinates. The normal vector
 is rescaled after it is multiplied by the inverse modelview matrix and
 before it is normalized.

 The rescale factor is chosen so that in many cases normal vectors with unit
 length in object coordinates will not need to be normalized as they
 are transformed into eye coordinates.

New Procedures and Functions

 None

New Tokens

 Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
 and GetDoublev:

 RESCALE_NORMAL_EXT 0x803A

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)

 Section 2.10.3

 Finally, we consider how the ModelView transformation state affects
 normals. Normals are of interest only in eye coordinates, so the rules
 governing their transformation to other coordinate systems are not
 examined.

 Normals which have unit length when sent to the GL, have their length
 changed by the inverse of the scaling factor after transformation by
 the model-view inverse matrix when the model-view matrix represents
 a uniform scale. If rescaling is enabled, then normals specified with

EXT_rescale_normal NVIDIA OpenGL Extension Specifications

 54

 the Normal command are rescaled after transformation by the ModelView
 Inverse.

 Normals sent to the GL may or may not have unit length. In addition,
 the length of the normals after transformation might be altered due
 to transformation by the model-view inverse matrix. If normalization
 is enabled, then normals specified with the Normal3 command are
 normalized after transformation by the model-view inverse matrix and
 after rescaling if rescaling is enabled. Normalization and rescaling
 are controlled with

 void Enable(enum target);

 and

 void Disable(enum target);

 with target equal to NORMALIZE or RESCALE_NORMAL. This requires two
 bits of state. The initial state is for normals not to be normalized or
 rescaled.
 .
 .
 .

 Therefore, if the modelview matrix is M, then the transformed plane equation
 is

 (n_x' n_y' n_z' q') = ((n_x n_y n_z q) * (M^-1)),

 the rescaled normal is

 (n_x" n_y" n_z") = f * (n_x' n_y' n_z'),

 and the fully transformed normal is

 1 (n_x")
 ____________ (n_y") (2.1)
 __________________________________ (n_z")
 V (n_x")^2 + (n_y")^2 + (n_z")^2

 If rescaling is disabled then f is 1, otherwise f is computed
 as follows:

 Let m_ij denote the matrix element in row i and column j of M^-1,
 numbering the topmost row of the matrix as row 1, and the leftmost
 column as column 1. Then

 1

 f = ________________________________
 V (m_31)^2 + (m_32)^2 + (m_33)^2

 Alternatively, an implementation my chose to normalize the normal
 instead of rescaling the normal. Then

NVIDIA OpenGL Extension Specifications EXT_rescale_normal

 55

 1

 f = ________________________________
 V (n_x')^2 + (n_y')^2 + (n_z')^2

 If normalization is disabled, then the square root in equation 2.1 is
 replaced with 1, otherwise

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

 None

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations and
the Framebuffer)

 None

Additions to Chapter 5 of the 1.1 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 None

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
RESCALE_NORMAL_EXT IsEnabled B FALSE transform/enable

New Implementation Dependent State

 None

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 56

Name

 EXT_secondary_color

Name Strings

 GL_EXT_secondary_color

Version

 $Date: 1999/06/21 19:57:47 $ $Revision: 1.8 $

Number

 145

Dependencies

 Either EXT_separate_specular_color or OpenGL 1.2 is required, to specify
 the "Color Sum" stage and other handling of the secondary color. This is
 written against the 1.2 specification (available from www.opengl.org).

Overview

 This extension allows specifying the RGB components of the secondary
 color used in the Color Sum stage, instead of using the default
 (0,0,0,0) color. It applies only in RGBA mode and when LIGHTING is
 disabled.

Issues

 * Can we use the secondary alpha as an explicit fog weighting factor?

 ISVs prefer a separate interface (see GL_EXT_fog_coord). The current
 interface specifies only the RGB elements, leaving the option of a
 separate extension for SecondaryColor4() entry points open (thus
 the apparently useless ARRAY_SIZE state entry).

 There is an unpleasant asymmetry with Color3() - one assumes A =
 1.0, the other assumes A = 0.0 - but this appears unavoidable given
 the 1.2 color sum specification language. Alternatively, the color
 sum language could be rewritten to not sum secondary A.

 * What about multiple "color iterators" for use with aggrandized
 multitexture implementations?

 We may need this eventually, but the secondary color is well defined
 and a more generic interface doesn't seem justified now.

 * Interleaved array formats?

 No. The multiplicative explosion of formats is too great.

 * Do we want to be able to query the secondary color value? How does it
 interact with lighting?

 The secondary color is not part of the GL state in the

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 57

 separate_specular_color extension that went into OpenGL 1.2. There,
 it can't be queried or obtained via feedback.

 The secondary_color extension is slightly more general-purpose, so
 the secondary color is explicitly in the GL state and can be queried
 - but it's still somewhat limited and can't be obtained via
 feedback, for example.

New Procedures and Functions

 void SecondaryColor3[bsifd ubusui]EXT(T components)
 void SecondaryColor3[bsifd ubusui]vEXT(T components)
 void SecondaryColorPointerEXT(int size, enum type, sizei stride,
 void *pointer)

New Tokens

 Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
 and GetDoublev:

 COLOR_SUM_EXT 0x8458

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 CURRENT_SECONDARY_COLOR_EXT 0x8459
 SECONDARY_COLOR_ARRAY_SIZE_EXT 0x845A
 SECONDARY_COLOR_ARRAY_TYPE_EXT 0x845B
 SECONDARY_COLOR_ARRAY_STRIDE_EXT 0x845C

 Accepted by the <pname> parameter of GetPointerv:

 SECONDARY_COLOR_ARRAY_POINTER_EXT 0x845D

 Accepted by the <array> parameter of EnableClientState and
 DisableClientState:

 SECONDARY_COLOR_ARRAY_EXT 0x845E

Additions to Chapter 2 of the 1.2 Draft Specification (OpenGL Operation)

 These changes describe a new current state type, the secondary color, and
 the commands to specify it:

 - (2.6, p. 12) Second paragraph changed to:

 "Each vertex is specified with two, three, or four coordinates. In
 addition, a current normal, current texture coordinates, current
 color, and current secondary color may be used in processing each
 vertex."

 Third paragraph, second sentence changed to:

 "These associated colors are either based on the current color and
 current secondary color, or produced by lighting, depending on
 whether or not lighting is enabled."

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 58

 - 2.6.3, p. 19) First paragraph changed to

 "The only GL commands that are allowed within any Begin/End pairs
 are the commands for specifying vertex coordinates, vertex colors,
 normal coordinates, and texture coordinates (Vertex, Color,
 SecondaryColorEXT, Index, Normal, TexCoord)..."

 - (2.7, p. 20) Starting with the fourth paragraph, change to:

 "Finally, there are several ways to set the current color and
 secondary color. The GL stores a current single-valued color index
 as well as a current four-valued RGBA color and secondary color.
 Either the index or the color and secondary color are significant
 depending as the GL is in color index mode or RGBA mode. The mode
 selection is made when the GL is initialized.

 The commands to set RGBA colors and secondary colors are:

 void Color[34][bsifd ubusui](T components)
 void Color[34][bsifd ubusui]v(T components)
 void SecondaryColor3[bsifd ubusui]EXT(T components)
 void SecondaryColor3[bsifd ubusui]vEXT(T components)

 The color command has two major variants: Color3 and Color4. The
 four value versions set all four values. The three value versions
 set R, G, and B to the provided values; A is set to 1.0. (The
 conversion of integer color components (R, G, B, and A) to
 floating-point values is discussed in section 2.13.)

 The secondary color command has only the three value versions.
 Secondary A is always set to 0.0.

 Versions of the Color and SecondaryColorEXT commands that take
 floating-point values accept values nominally between 0.0 and
 1.0...."

 The last paragraph is changed to read:

 "The state required to support vertex specification consists of four
 floating-point numbers to store the current texture coordinates s,
 t, r, and q, four floating-point values to store the current RGBA
 color, four floating-point values to store the current RGBA
 secondary color, and one floating-point value to store the current
 color index. There is no notion of a current vertex, so no state is
 devoted to vertex coordinates. The initial values of s, t, and r of
 the current texture coordinates are zero; the initial value of q is
 one. The initial current normal has coordinates (0,0,1). The initial
 RGBA color is (R,G,B,A) = (1,1,1,1). The initial RGBA secondary
 color is (R,G,B,A) = (0,0,0,0). The initial color index is 1."

 - (2.8, p. 21) Added secondary color command for vertex arrays:

 Change first paragraph to read:

 "The vertex specification commands described in section 2.7 accept
 data in almost any format, but their use requires many command

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 59

 executions to specify even simple geometry. Vertex data may also be
 placed into arrays that are stored in the client's address space.
 Blocks of data in these arrays may then be used to specify multiple
 geometric primitives through the execution of a single GL command.
 The client may specify up to seven arrays: one each to store edge
 flags, texture coordinates, colors, secondary colors, color indices,
 normals, and vertices. The commands"

 Add to functions listed following first paragraph:

 void SecondaryColorPointerEXT(int size, enum type, sizei stride,
 void *pointer)

 Add to table 2.4 (p. 22):

 Command Sizes Types
 ------- ----- -----
 SecondaryColorPointerEXT 3,4 byte,ubyte,short,ushort,
 int,uint,float,double

 Starting with the second paragraph on p. 23, change to add
 SECONDARY_COLOR_ARRAY_EXT:

 "An individual array is enabled or disabled by calling one of

 void EnableClientState(enum array)
 void DisableClientState(enum array)

 with array set to EDGE_FLAG_ARRAY, TEXTURE_COORD_ARRAY, COLOR_ARRAY,
 SECONDARY_COLOR_ARRAY_EXT, INDEX_ARRAY, NORMAL_ARRAY, or
 VERTEX_ARRAY, for the edge flag, texture coordinate, color,
 secondary color, color index, normal, or vertex array, respectively.

 The ith element of every enabled array is transferred to the GL by
 calling

 void ArrayElement(int i)

 For each enabled array, it is as though the corresponding command
 from section 2.7 or section 2.6.2 were called with a pointer to
 element i. For the vertex array, the corresponding command is
 Vertex<size><type>v, where <size> is one of [2,3,4], and <type> is
 one of [s,i,f,d], corresponding to array types short, int, float,
 and double respectively. The corresponding commands for the edge
 flag, texture coordinate, color, secondary color, color index, and
 normal arrays are EdgeFlagv, TexCoord<size><type>v,
 Color<size><type>v, SecondaryColor3<type>vEXT, Index<type>v, and
 Normal<type>v, respectively..."

 Change pseudocode on p. 27 to disable secondary color array for
 canned interleaved array formats. After the lines

 DisableClientState(EDGE_FLAG_ARRAY);
 DisableClientState(INDEX_ARRAY);

 insert the line

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 60

 DisableClientState(SECONDARY_COLOR_ARRAY_EXT);

 Substitute "seven" for every occurence of "six" in the final paragraph
 on p. 27.

 - (2.12, p. 41) Add secondary color to the current rasterpos state.

 Change the last paragraph to read

 "The current raster position requires five single-precision
 floating-point values for its x_w, y_w, and z_w window coordinates,
 its w_c clip coordinate, and its eye coordinate distance, a single
 valid bit, a color (RGBA color, RGBA secondary color, and color
 index), and texture coordinates for associated data. In the initial
 state, the coordinates and texture coordinates are both $(0,0,0,1)$,
 the eye coordinate distance is 0, the valid bit is set, the
 associated RGBA color is $(1,1,1,1)$, the associated RGBA secondary
 color is $(0,0,0,0)$, and the associated color index color is 1. In
 RGBA mode, the associated color index always has its initial value;
 in color index mode, the RGBA color and and secondary color always
 maintain their initial values."

 - (2.13, p. 43) Change second paragraph to acknowledge two colors when
 lighting is disabled:

 "Next, lighting, if enabled, produces either a color index or
 primary and secondary colors. If lighting is disabled, the current
 color index or current color (primary color) and current secondary
 color are used in further processing. After lighting, RGBA colors
 are clamped..."

 - (Figure 2.8, p. 42) Change to show primary and secondary RGBA colors in
 both lit and unlit paths.

 - (2.13.1, p. 44) Change so that the second paragraph starts:

 "Lighting may be in one of two states:

 1. Lighting Off. In this state, the current color and current secondary
 color are assigned to the vertex primary color and vertex secondary
 color, respectively.

 2. ..."

 - (2.13.1, p. 48) Change the sentence following equation 2.5 (for spot_i)
 so that color sum is implicitly enabled when SEPARATE_SPECULAR_COLOR is
 set:

 "All computations are carried out in eye coordinates. When c_es =
 SEPARATE_SPECULAR_COLOR, it is as if color sum (see section 3.9) were
 enabled, regardless of the value of COLOR_SUM_EXT."

 - (3.9, p. 136) Change the first paragraph to read

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 61

 "After texturing, a fragment has two RGBA colors: a primary color c_pri
 (which texturing, if enabled, may have modified) and a secondary color
 c_sec.

 If color sum is enabled, the components of these two colors are summed
 to produce a single post-texturing RGBA color c (the A component of the
 secondary color is always 0). The components of c are then clamped to
 the range [0,1]. If color sum is disabled, then c_pri is assigned to the
 post texturing color. Color sum is enabled or disabled using the generic
 Enable and Disable commands, respectively, with the symbolic constant
 COLOR_SUM_EXT.

 The state required is a single bit indicating whether color sum is
 enabled or disabled. In the initial state, color sum is disabled."

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 Eight new GL rendering commands are added. The following commands
 are sent to the server as part of a glXRender request:

 SecondaryColor3bvEXT
 2 8 rendering command length
 2 4126 rendering command opcode
 1 INT8 v[0]
 1 INT8 v[1]
 1 INT8 v[2]
 1 unused

 SecondaryColor3svEXT
 2 12 rendering command length
 2 4127 rendering command opcode
 2 INT16 v[0]
 2 INT16 v[1]
 2 INT16 v[2]
 2 unused

 SecondaryColor3ivEXT
 2 16 rendering command length
 2 4128 rendering command opcode
 4 INT32 v[0]
 4 INT32 v[1]
 4 INT32 v[2]

 SecondaryColor3fvEXT
 2 16 rendering command length
 2 4129 rendering command opcode
 4 FLOAT32 v[0]
 4 FLOAT32 v[1]
 4 FLOAT32 v[2]

EXT_secondary_color NVIDIA OpenGL Extension Specifications

 62

 SecondaryColor3dvEXT
 2 28 rendering command length
 2 4130 rendering command opcode
 8 FLOAT64 v[0]
 8 FLOAT64 v[1]
 8 FLOAT64 v[2]

 SecondaryColor3ubvEXT
 2 8 rendering command length
 2 4131 rendering command opcode
 1 CARD8 v[0]
 1 CARD8 v[1]
 1 CARD8 v[2]
 1 unused

 SecondaryColor3usvEXT
 2 12 rendering command length
 2 4132 rendering command opcode
 2 CARD16 v[0]
 2 CARD16 v[1]
 2 CARD16 v[2]
 2 unused

 SecondaryColor3uivEXT
 2 16 rendering command length
 2 4133 rendering command opcode
 4 CARD32 v[0]
 4 CARD32 v[1]
 4 CARD32 v[2]

Errors

 INVALID_VALUE is generated if SecondaryColorPointerEXT parameter <size>
 is not 3.

 INVALID_ENUM is generated if SecondaryColorPointerEXT parameter <type>
 is not BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT,
 FLOAT, or DOUBLE.

 INVALID_VALUE is generated if SecondaryColorPointerEXT parameter
 <stride> is negative.

NVIDIA OpenGL Extension Specifications EXT_secondary_color

 63

New State

(table 6.5, p. 195)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
CURRENT_SECONDARY_COLOR_EXT C GetIntegerv, (0,0,0,0) Current 2.7 current
 GetFloatv secondary color

(table 6.6, p. 197)
 Initial
Get Value Type Get Command Value Description Sec Attribute
--------- ---- ----------- ------- -------------- --- ---------
SECONDARY_COLOR_ARRAY_EXT B IsEnabled False Sec. color array enable 2.8 vertex-array
SECONDARY_COLOR_ARRAY_SIZE_EXT Z+ GetIntegerv 3 Sec. colors per vertex 2.8 vertex-array
SECONDARY_COLOR_ARRAY_TYPE_EXT Z8 GetIntegerv FLOAT Type of sec. color components 2.8 vertex-array
SECONDARY_COLOR_ARRAY_STRIDE_EXT Z+ GetIntegerv 0 Stride between sec. colors 2.8 vertex-array
SECONDARY_COLOR_ARRAY_POINTER_EXT Y GetPointerv 0 Pointer to the sec. color array 2.8 vertex-array

(table 6.8, p. 198)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
COLOR_SUM_EXT B IsEnabled False True if color 3.9 fog/enable
 sum enabled

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

 64

Name

 EXT_separate_specular_color

Name Strings

 GL_EXT_separate_specular_color

Version

 $Date: 1997/10/05 00:16:23 $ $Revision: 1.3 $

Number

 144

Dependencies

 None

Overview

 This extension adds a second color to rasterization when lighting is
 enabled. Its purpose is to produce textured objects with specular
 highlights which are the color of the lights. It applies only to
 rgba lighting.

 The two colors are computed at the vertexes. They are both clamped,
 flat-shaded, clipped, and converted to fixed-point just like the
 current rgba color (see Figure 2.8). Rasterization interpolates
 both colors to fragments. If texture is enabled, the first (or
 primary) color is the input to the texture environment; the fragment
 color is the sum of the second color and the color resulting from
 texture application. If texture is not enabled, the fragment color
 is the sum of the two colors.

 A new control to LightModel*, LIGHT_MODEL_COLOR_CONTROL_EXT, manages
 the values of the two colors. It takes values: SINGLE_COLOR_EXT, a
 compatibility mode, and SEPARATE_SPECULAR_COLOR_EXT, the object of
 this extension. In single color mode, the primary color is the
 current final color and the secondary color is 0.0. In separate
 specular mode, the primary color is the sum of the ambient, diffuse,
 and emissive terms of final color and the secondary color is the
 specular term.

 There is much concern that this extension may not be compatible with
 the future direction of OpenGL with regards to better lighting and
 shading models. Until those impacts are resolved, serious
 consideration should be given before adding to the interface
 specified herein (for example, allowing the user to specify a
 second input color).

Issues

 * Where is emissive included?

 RESOLVED - Emissive is included with the ambient and diffuse

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

 65

 terms. Grouping emissive with specular (the "proper" thing) could
 be implemented with a new value for the color control.

* Should there be two colors when not lighting or with index
 lighting?

 RESOLVED - The answer is probably yes--there should be two colors
 when lighting is disabled and there could be an incorporation of
 two colors with index lighting; but these are beyond the scope of
 this extension. Further, attempts to accomplish these may not be
 compatible with the future direction of OpenGL with respect to
 high quality lighting and shading models.

 * What happens when texture is disabled?

 RESOLVED - The extension specifies to add the two colors when
 texture is disabled. This is compatible with the philosophy of
 "if texture is disabled, this mode does not apply".

New Procedures and Functions

 None.

New Tokens

 Accepted by the <pname> parameter of LightModel*, and also by the
 <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and
 GetDoublev:

 LIGHT_MODEL_COLOR_CONTROL_EXT 0x81F8

 Accepted by the <param> parameter of LightModel* when <pname> is
 LIGHT_MODEL_COLOR_CONTROL_EXT:

 SINGLE_COLOR_EXT 0x81F9
 SEPARATE_SPECULAR_COLOR_EXT 0x81FA

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

 - (2.13, p. 40) Rework the second paragraph to acknowledge two
 colors:

 "Next, lighting, if enabled, produces either a color index or
 primary and secondary colors. If lighting is disabled, the
 current color index or color is used in further processing (the
 current color is the primary color and the secondary color is 0).
 After lighting, colors are clamped..."

 - (Figure 2.8, p. 41) Change RGBA to primary RGBA and secondary RGB:

 Ideally, there might be an RGB2 underneath RGBA (both places).
 Alternatively, a note in the caption could clarify that RGBA
 referred to the primary RGBA and a secondary RGB. (Speaking of
 the caption, the part about "m is the number of bits an R, G, B,
 or A component" could be removed as m doesn't appear in the
 diagram.)

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

 66

 - (2.13.1, p. 42) Rework the opening of this section to not imply a
 single color:

 In the first sentence, change "a color" to "colors". Rephrase the
 itemization of the two lighting states to:

 "1. Lighting Off. In this state, the current color is assigned to
 the vertex primary color. The vertex secondary color is 0.

 2. Lighting On. In this state, the vertex primary and secondary
 colors are computed from the current lighting parameters."

 - (Table 2.7, p.44) Add new entry (at the bottom):

 Parameter Type Default Value Description
 --------- ---- ---------------- ------------------------------
 c_es enum SINGLE_COLOR_EXT controls computation of colors

 - (p. 45, top of page) Rephrase the first line and equation:

 "Lighting produces two colors at a vertex: a primary color c_1 and
 a secondary color c_2. The values of c_1 and c_2 depend on the
 light model color control, c_es (note: c_es should be in italics
 and c_1 and c_2 in bold, so this really won't be as confusing as
 it seems). If c_es = SINGLE_COLOR_EXT, then the equations to
 compute c_1 and c_2 are (note: the equation for c_1 is the current
 equation for c):

 c_1 = e_cm
 + a_cm * a_cs
 + SUM(att_i * spot_i * (a_cm * a_cli
 + dot(n, VP_pli) * d_cm * d_cli
 + f_i * dot(n, h_i)^s_rm * s_cm * s_cli)
 c_2 = 0

 If c_es = SEPARATE_SPECULAR_COLOR_EXT, then:

 c_1 = e_cm
 + a_cm * a_cs
 + SUM (att_i * spot_i * (a_cm * a_cli
 + (n dot VP_pli) * d_cm * d_cli)

 c_2 = SUM(att_i * spot_i * (f_i * (n dot h_i)^s_rm * s_cm * s_cli)

 - (p. 45, second paragraph from bottom) Clarify that A is in the
 primary color:

 After the sentence "The value of A produced by lighting is the
 alpha value associated with d_cm", add "A is always associated
 with the primary color c_1; c_2 has no alpha component."

 - (Table 2.8, p. 48) Add a new entry (at the bottom):

 Parameter Name Number of values
 --------- ----------------------------- ----------------
 c_es LIGHT_MODEL_COLOR_CONTROL_EXT 1

NVIDIA OpenGL Extension Specifications EXT_separate_specular_color

 67

 - (2.13.6, p. 51) Clarify that both primary and secondary colors are
 clamped:

 Replace "RGBA" in the first line of the section with "both primary
 and secondary".

 - (2.13.7, p. 52) Clarify what happens to primary and secondary
 colors when flat shading--reword the first paragraph:

 "A primitive may be flatshaded, meaning that all vertices of the
 primitive are assigned the same color index or primary and
 secondary colors. These come from the vertex that spawned the
 primitive. For a point, these are the colors associated with the
 point. For a line segment, they are the colors of the second
 (final) vertex of the segment. For a polygon, they come from a
 selected vertex depending on how the polygon was generated. Table
 2.9 summarizes the possibilities."

 - (2.13.8, p. 52) Rework to not imply a single color:

 In the second sentence, change "If the color is" to "Those" and ",
 it is" to "are". In the first sentence of the next paragraph,
 change "the color" to "two colors".

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

 - (Figure 3.1, p. 55) Add a box between texturing and fog called
 "color sum".

 - (3.8, p. 85) In the first paragraph, second sentence, insert
 "primary" before RGBA. Insert after this sentence "Texturing does
 not affect the secondary color."

 - (new section before 3.9) Insert new section titled "Color Sum":

 "At the beginning of this stage in RGBA mode, a fragment has two
 colors: a primary RGBA color (which texture, if enabled, may have
 modified) and a secondary RGB color. This stage sums the R, G,
 and B components of these two colors to produce a single RGBA
 color. If the resulting RGB values exceed 1.0, they are clamped
 to 1.0.

 In color index mode, a fragment only has a single color index and
 this stage does nothing."

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame Buffer)

 None.

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

 - (5.3, p. 137) Specify that feedback returns the primary color by
 changing the last sentence of the large paragraph in the middle
 of the page to:

EXT_separate_specular_color NVIDIA OpenGL Extension Specifications

 68

 "The colors returned are the primary colors. These colors and the
 texture coordinates are those resulting from the clipping operations
 as described in section 2.13.8."

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

 - (Table 6.9, p. 157) Add:

 Get Value - LIGHT_MODEL_COLOR_CONTROL_EXT
 Type - Z2
 Get Cmnd - GetIntegerv
 Initial Value - SINGLE_COLOR_EXT
 Description - color control
 Sec. - (whatever it ends up as)
 Attribute - lighting

Additions to the GLX Specification

 None.

GLX Protocol

 None.

Errors

 None.

New State

 (see changes to table 6.9)

NVIDIA OpenGL Extension Specifications EXT_shared_texture_palette

 69

Name

 EXT_shared_texture_palette

Name Strings

 GL_EXT_shared_texture_palette

Version

 $Date: 1997/09/10 23:23:04 $ $Revision: 1.2 $

Number

 141

Dependencies

 EXT_paletted_texture is required.

Overview

 EXT_shared_texture_palette defines a shared texture palette which may be
 used in place of the texture object palettes provided by
 EXT_paletted_texture. This is useful for rapidly changing a palette
 common to many textures, rather than having to reload the new palette
 for each texture. The extension acts as a switch, causing all lookups
 that would normally be done on the texture's palette to instead use the
 shared palette.

Issues

 * Do we want to use a new <target> to ColorTable to specify the
 shared palette, or can we just infer the new target from the
 corresponding Enable?

 * A future extension of larger scope might define a "texture palette
 object" and bind these objects to texture objects dynamically, rather
 than making palettes part of the texture object state as the current
 EXT_paletted_texture spec does.

 * Should there be separate shared palettes for 1D, 2D, and 3D
 textures?

 Probably not; palette lookups have nothing to do with the
 dimensionality of the texture. If multiple shared palettes
 are needed, we should define palette objects.

 * There's no proxy mechanism for checking if a shared palette can
 be defined with the requested parameters. Will it suffice to
 assume that if a texture palette can be defined, so can a shared
 palette with the same parameters?

 * The changes to the spec are based on changes already made for
 EXT_paletted_texture, which means that all three documents must
 be referred to. This is quite difficult to read.

EXT_shared_texture_palette NVIDIA OpenGL Extension Specifications

 70

 * The changes to section 3.8.6, defining how shared palettes are
 enabled and disabled, might be better placed in section 3.8.1.
 However, the underlying EXT_paletted_texture does not appear to
 modify these sections to define exactly how palette lookups are
 done, and it's not clear where to put the changes.

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
 GetFloatv, GetDoublev, IsEnabled, Enable, Disable, ColorTableEXT,
 ColorSubTableEXT, GetColorTableEXT, GetColorTableParameterivEXT, and
 GetColorTableParameterfd EXT:

 SHARED_TEXTURE_PALETTE_EXT 0x81FB

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.1 Specification (Rasterization)

 Section 3.8, 'Texturing,' subsection 'Texture Image Specification' is
 modified as follows:

 In the Palette Specification Commands section, the sentence
 beginning 'target specifies which texture is to' should be changed
 to:

 target specifies the texture palette or shared palette to be
 changed, and may be one of TEXTURE_1D, TEXTURE_2D,
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, TEXTURE_3D_EXT,
 PROXY_TEXTURE_3D_EXT, or SHARED_TEXTURE_PALETTE_EXT.

 In the 'Texture State and Proxy State' section, the sentence
 beginning 'A texture's palette is initially...' should be changed
 to:

 There is also a shared palette not associated with any texture, which
 may override a texture palette. All palettes are initially...

 Section 3.8.6, 'Texture Application' is modified by appending the
 following:

 Use of the shared texture palette is enabled or disabled using the
 generic Enable or Disable commands, respectively, with the symbolic
 constant SHARED_TEXTURE_PALETTE_EXT.

 The required state is one bit indicating whether the shared palette is
 enabled or disabled. In the initial state, the shared palettes is
 disabled.

Additions to Chapter 4 of the 1.1 Specification (Per-Fragment Operations
and the Frame buffer)

NVIDIA OpenGL Extension Specifications EXT_shared_texture_palette

 71

Additions to Chapter 5 of the 1.1 Specification (Special Functions)

Additions to Chapter 6 of the 1.1 Specification (State and State Requests)

 In the section on GetTexImage, the sentence beginning 'If format is
 not COLOR_INDEX...' should be changed to:

 If format is not COLOR_INDEX, the texture's indices are passed
 through the texture's palette, or the shared palette if one is
 enabled, and the resulting components are assigned among R, G, B,
 and A according to Table 6.1.

 In the GetColorTable section, the first sentence of the second
 paragraph should be changed to read:

 GetColorTableEXT retrieves the texture palette or shared palette
 given by target.

 The first sentence of the third paragraph should be changed to read:

 Palette parameters can be retrieved using

 void GetColorTableParameterivEXT(enum target, enum pname, int *params);
 void GetColorTableParameterfvEXT(enum target, enum pname, float *params);

 target specifies the texture palette or shared palette being
 queried and pname controls which parameter value is returned.

Additions to the GLX Specification

 None

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
SHARED_TEXTURE_PALETTE_EXT IsEnabled B False texture/enable

New Implementation Dependent State

 None

EXT_stencil_wrap NVIDIA OpenGL Extension Specifications

 72

Name

 EXT_stencil_wrap

Name Strings

 GL_EXT_stencil_wrap

Version

 Date: 11/15/1999 Version 1.2

Number

 176

Dependencies

 None

Overview

 Various algorithms use the stencil buffer to "count" the number of
 surfaces that a ray passes through. As the ray passes into an object,
 the stencil buffer is incremented. As the ray passes out of an object,
 the stencil buffer is decremented.

 GL requires that the stencil increment operation clamps to its maximum
 value. For algorithms that depend on the difference between the sum
 of the increments and the sum of the decrements, clamping causes an
 erroneous result.

 This extension provides an enable for both maximum and minimum wrapping
 of stencil values. Instead, the stencil value wraps in both directions.

 Two additional stencil operations are specified. These new operations
 are similiar to the existing INCR and DECR operations, but they wrap their
 result instead of saturating it. This functionality matches the new
 stencil operations introduced by DirectX 6.

New Procedures and Functions

 None

New Tokens

 Accepted by the <mode> parameter of BlendEquation:

 INCR_WRAP_EXT 0x8507
 DECR_WRAP_EXT 0x8508

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

NVIDIA OpenGL Extension Specifications EXT_stencil_wrap

 73

Additions to Chapter 3 of the GL Specification (Rasterization)

 None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 Section 4.1.4 "Stencil Test" (page 144), change the 3rd paragraph to read:

 "... The symbolic constants are KEEP, ZERO, REPLACE, INCR, DECR,
 INVERT, INCR_WRAP_EXT, and DECR_WRAP_EXT. The correspond to
 keeping the current value, setting it to zero, replacing it with
 the reference value, incrementing it with saturation, decrementing
 it with saturation, bitwise inverting it, incrementing it without
 saturation, and decrementing it without saturation. For purposes of
 incrementing and decrementing, the stencil bits are considered as an
 unsigned integer. Incrementing or decrementing with saturation will
 clamp values at 0 and the maximum representable value. Incrementing
 or decrementing without saturation will wrap such that incrementing
 the maximum representable value results in 0 and decrementing 0
 results in the maximum representable value. ..."

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 INVALID_ENUM is generated by StencilOp if any of its parameters
 are not KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP_EXT,
 or DECR_WRAP_EXT.

New State

(table 6.15, page 205)
 Get Value Type Get Command Initial Value Sec Attribute
 ------------------------ ---- ------------ ------------- ----- ---------
 STENCIL_FAIL Z8 GetIntegerv KEEP 4.1.4 stencil-buffer
 STENCIL_PASS_DEPTH_FAIL Z8 GetIntegerv KEEP 4.1.4 stencil-buffer
 STENCIL_PASS_DEPTH_PASS Z8 GetIntegerv KEEP 4.1.4 stencil-buffer

NOTE: the only change is that Z6 type changes to Z8

New Implementation Dependent State

 None

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

 74

Name

 EXT_texture_cube_map

Name Strings

 GL_EXT_texture_cube_map

Notice

 Copyright NVIDIA Corporation, 1999.

Version

 November 15, 1999

Number

 ??

Dependencies

 None.

 Written based on the wording of the OpenGL 1.2 specification but
 not dependent on it.

Overview

 This extension provides a new texture generation scheme for cube
 map textures. Instead of the current texture providing a 1D, 2D,
 or 3D lookup into a 1D, 2D, or 3D texture image, the texture is a
 set of six 2D images representing the faces of a cube. The (s,t,r)
 texture coordinates are treated as a direction vector emanating from
 the center of a cube. At texture generation time, the interpolated
 per-fragment (s,t,r) selects one cube face 2D image based on the
 largest magnitude coordinate (the major axis). A new 2D (s,t) is
 calculated by dividing the two other coordinates (the minor axes
 values) by the major axis value. Then the new (s,t) is used to
 lookup into the selected 2D texture image face of the cube map.

 Unlike a standard 1D, 2D, or 3D texture that have just one target,
 a cube map texture has six targets, one for each of its six 2D texture
 image cube faces. All these targets must be consistent, complete,
 and have a square dimension.

 This extension also provides two new texture coordinate generation modes
 for use in conjunction with cube map texturing. The reflection map
 mode generates texture coordinates (s,t,r) matching the vertex's
 eye-space reflection vector. The reflection map mode
 is useful for environment mapping without the singularity inherent
 in sphere mapping. The normal map mode generates texture coordinates
 (s,t,r) matching the vertex's transformed eye-space
 normal. The normal map mode is useful for sophisticated cube
 map texturing-based diffuse lighting models.

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

 75

 The intent of the new texgen functionality is that an application using
 cube map texturing can use the new texgen modes to automatically
 generate the reflection or normal vectors used to look up into the
 cube map texture.

 An application note: When using cube mapping with dynamic cube
 maps (meaning the cube map texture is re-rendered every frame),
 by keeping the cube map's orientation pointing at the eye position,
 the texgen-computed reflection or normal vector texture coordinates
 can be always properly oriented for the cube map. However if the
 cube map is static (meaning that when view changes, the cube map
 texture is not updated), the texture matrix must be used to rotate
 the texgen-computed reflection or normal vector texture coordinates
 to match the orientation of the cube map. The rotation can be
 computed based on two vectors: 1) the direction vector from the cube
 map center to the eye position (both in world coordinates), and 2)
 the cube map orientation in world coordinates. The axis of rotation
 is the cross product of these two vectors; the angle of rotation is
 the arcsin of the dot product of these two vectors.

Issues

 Should we place the normal/reflection vector in the (s,t,r) texture
 coordinates or (s,t,q) coordinates?

 RESOLUTION: (s,t,r). Even if hardware uses "q" for the third
 component, the API should claim to support generation of (s,t,r)
 and let the texture matrix (through a concatenation with the
 user-supplied texture matrix) move "r" into "q".

 Should the texture coordinate generation functionality for cube
 mapping be specified as a distinct extension from the actual cube
 map texturing functionality?

 RESOLUTION: NO. Real applications and real implementations of
 cube mapping will tie the texgen and texture generation functionality
 together. Applications won't have to query two separate
 extensions then.

 While applications will almost always want to use the texgen
 functionality for automatically generating the reflection or normal
 vector as texture coordinates (s,t,r), this extension does permit
 an application to manually supply the reflection or normal vector
 through glTexCoord3f explicitly.

 Note that the NV_texgen_reflection extension does "unbundle"
 the texgen functionality from cube maps.

 Should you be able to have some texture coordinates computing
 REFLECTION_MAP_EXT and others not? Same question with NORMAL_MAP_EXT.

 RESOLUTION: YES. This is the way that SPHERE_MAP works. It is
 not clear that this would ever be useful though.

 Should something special be said about the handling of the q
 texture coordinate for this spec?

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

 76

 RESOLUTION: NO. But the following paragraph is useful for
 implementors concerned about the handling of q.

 The REFLECTION_MAP_EXT and NORMAL_MAP_EXT modes are intended to supply
 reflection and normal vectors for cube map texturing hardware.
 When these modes are used for cube map texturing, the generated
 texture coordinates can be thought of as a reflection vector.
 The value of the q texture coordinate then simply scales the
 vector but does not change its direction. Because only the vector
 direction (not the vector magnitude) matters for cube map texturing,
 implementations are free to leave q undefined when any of the s,
 t, or r texture coordinates are generated using REFLECTION_MAP_EXT
 or NORMAL_MAP_EXT.

 How should the cube faces be labeled?

 RESOLUTION: Match the render man specification's names of "px"
 (positive X), "nx" (negative x), "py", "ny", "pz", and "nz".
 There does not actually need to be an "ordering for the faces"
 (Direct3D 7.0 does number their cube map faces.) For this
 extension, the symbolic target names (TEXTURE_CUBE_MAP_POSITIVE_X_EXT,
 etc) is sufficient without requiring any specific ordering.

 What coordinate system convention should be used? LHS or RHS?

 RESOLUTION: The coordinate system is left-handed if you think
 of yourself within the cube. The coordinate system is
 right-handed if you think of yourself outside the cube.

 This matches the convention of the RenderMan interface. If
 you look at Figure 12.8 (page 265) in "The RenderMan Companion",
 think of the cube being folded up with the observer inside
 the cube. Then the coordinate system convention is
 left-handed.

 The spec just linearly interpolates the reflection vectors computed
 per-vertex across polygons. Is there a problem interpolating
 reflection vectors in this way?

 Probably. The better approach would be to interpolate the eye
 vector and normal vector over the polygon and perform the reflection
 vector computation on a per-fragment basis. Not doing so is likely
 to lead to artifacts because angular changes in the normal vector
 result in twice as large a change in the reflection vector as normal
 vector changes. The effect is likely to be reflections that become
 glancing reflections too fast over the surface of the polygon.

 Note that this is an issue for REFLECTION_MAP_EXT, but not
 NORMAL_MAP_EXT.

 What happens if an (s,t,q) is passed to cube map generation that
 is close to (0,0,0), ie. a degenerate direction vector?

 RESOLUTION: Leave undefined what happens in this case (but
 may not lead to GL interruption or termination).

 Note that a vector close to (0,0,0) may be generated as a

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

 77

 result of the per-fragment interpolation of (s,t,r) between
 vertices.

 Do we need a distinct proxy texture mechanism for cube map
 textures?

 RESOLUTION: YES. Cube map textures take up six times the
 memory as a conventional 2D image texture so proxy 2D texture
 determinations won't be of value for a cube map texture.
 Cube maps need their own proxy target.

 Should we require the 2D texture image width and height to
 be identical (ie, square only)?

 RESOLUTION: YES. This limitation is quite a reasonable limitation
 and DirectX 7 has the same limitation.

 This restriction is enforced by generating an INVALID_VALUE
 when calling TexImage2D or CopyTexImage2D with a non-equal
 width and height.

 Some consideration was given to enforcing the "squarness"
 constraint as a texture consistency constraint. This is
 confusing however since the squareness is known up-front
 at texture image specification time so it seems confusing
 to silently report the usage error as a texture consistency
 issue.

 Texture consistency still says that all the level 0 textures
 of all six faces must have the same square size.

 If some combination of 1D, 2D, 3D, and cube map texturing is
 enabled, which really operates?

 RESOLUTION: Cube map texturing. In OpenGL 1.2, 3D takes
 priority over 2D takes priority over 1D. Cube mapping should
 take priority over all conventional n-dimensional texturing
 schemes.

 Does anything need to be said about combining cube mapping with
 multitexture?

 RESOLUTION: NO. Cube mapping should be available on either
 texture unit. The hardware should fully orthogonal in its handling
 of cube map textures.

 Does it make sense to support borders for cube map textures.

 Actually, it does. It would be nice if the texture border pixels
 match the appropriate texels from the edges of the other cube map
 faces that they junction with. For this reason, we'll leave the
 texture border capability implicitly supported.

 How does mipmap level-of-detail selection work for cube map
 textures?

 The existing spec's language about LOD selection is fine.

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

 78

 Should the implementation dependent value for the maximum
 texture size for a cube map be the same as MAX_TEXTURE_SIZE?

 RESOLUTION: NO. OpenGL 1.2 has a different MAX_3D_TEXTURE_SIZE
 for 3D textures, and cube maps should take six times more space
 than a 2D texture map of the same width & height. The implementation
 dependent MAX_CUBE_MAP_TEXTURE_SIZE_EXT constant should be used for
 cube maps then.

 Note that the proxy cube map texture provides a better way to
 find out the maximum cube map texture size supported since the
 proxy mechanism can take into account the internal format, etc.

 In section 3.8.10 when the "largest magnitude coordinate direction"
 is choosen, what happens if two or more of the coordinates (rx,ry,rz)
 have the identical magnitude?

 RESOLUTION: Implementations can define their own rule to choose
 the largest magnitude coordinate direction whne two or more of the
 coordinates have the identical magnitude. The only restriction is
 that the rule must be deterministic and depend only on (rx,ry,rz).

 In practice, (s,t,r) is interpolated across polygons so the cases
 where |s|==|t|, etc. are pretty arbitary (the equality depends on
 interpolation precision). This extension could mandate a particular
 rule, but that seems heavy-handed and there is no good reason that
 multiple vendors should be forced to implement the same rule.

 Should there be limits on the supported border modes for cube maps?

 RESOLUTION: NO. The specificiation is written so that cube map
 texturing proceeds just like conventional 2D texture mapping once
 the face determination is made.

 Therefore, all OpenGL texture wrap modes should be supported though
 some modes are clearly inappropriate for cube maps. The WRAP mode
 is almost certainly incorrect for cube maps. Likewise, the CLAMP
 mode without a texture border is almost certainly incorrect for cube
 maps. CLAMP when a texture border is present and CLAMP_TO_EDGE are
 both reasonably suited for cube maps. Ideally, CLAMP with a texture
 border works best if the cube map edges can be replicated in the
 approriate texture borders of adjacent cube map faces. In practice,
 CLAMP_TO_EDGE works reasonably well in most circumstances.

 Perhaps another extension could support a special cube map wrap
 mode that automatically wraps individual texel fetches to the
 appropriate adjacent cube map face. The benefit from such a mode
 is small and the implementation complexity is involved so this wrap
 mode should not be required for a basic cube map texture extension.

 How is mipmap LOD selection handled for cube map textures?

 RESOLUTION: The specification is written so that cube map texturing
 proceeds just like conventional 2D texture mapping once the face
 determination is made.

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

 79

 Thereforce, the partial differentials in Section 3.8.5 (page
 126) should be evaluated for the u and v parameters based on the
 post-face determination s and t.

 In Section 2.10.3 "Normal Transformation", there are several versions
 of the eye-space normal vector to choose from. Which one should
 the NORMAL_MAP_ARB texgen mode use?

 RESOLUTION: nf. The nf vector is the final normal, post-rescale
 normal and post-normalize. In practice, the rescale normal and
 normalize operations do not change the direction of the vector
 so the choice of which version of transformed normal is used is
 not important for cube maps.

New Procedures and Functions

 None

New Tokens

 Accepted by the <param> parameters of TexGend, TexGenf, and TexGeni
 when <pname> parameter is TEXTURE_GEN_MODE:

 NORMAL_MAP_EXT 0x8511
 REFLECTION_MAP_EXT 0x8512

 When the <pname> parameter of TexGendv, TexGenfv, and TexGeniv is
 TEXTURE_GEN_MODE, then the array <params> may also contain
 NORMAL_MAP_EXT or REFLECTION_MAP_EXT.

 Accepted by the <cap> parameter of Enable, Disable, IsEnabled, and
 by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
 and GetDoublev, and by the <target> parameter of BindTexture,
 GetTexParameterfv, GetTexParameteriv, TexParameterf, TexParameteri,
 TexParameterfv, and TexParameteriv:

 TEXTURE_CUBE_MAP_EXT 0x8513

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 TEXTURE_BINDING_CUBE_MAP_EXT 0x8514

 Accepted by the <target> parameter of GetTexImage,
 GetTexLevelParameteriv, GetTexLevelParameterfv, TexImage2D,
 CopyTexImage2D, TexSubImage2D, and CopySubTexImage2D:

 TEXTURE_CUBE_MAP_POSITIVE_X_EXT 0x8515
 TEXTURE_CUBE_MAP_NEGATIVE_X_EXT 0x8516
 TEXTURE_CUBE_MAP_POSITIVE_Y_EXT 0x8517
 TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT 0x8518
 TEXTURE_CUBE_MAP_POSITIVE_Z_EXT 0x8519
 TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT 0x851a

 Accepted by the <target> parameter of GetTexLevelParameteriv,
 GetTexLevelParameterfv, GetTexParameteriv, and TexImage2D:

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

 80

 PROXY_TEXTURE_CUBE_MAP_EXT 0x851b

 Accepted by the <pname> parameter of GetBooleanv, GetDoublev,
 GetIntegerv, and GetFloatv:

 MAX_CUBE_MAP_TEXTURE_SIZE_EXT 0x851c

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

 -- Section 2.10.4 "Generating Texture Coordinates"

 Change the last sentence in the 1st paragraph to:

 "If <pname> is TEXTURE_GEN_MODE, then either <params> points to
 or <param> is an integer that is one of the symbolic constants
 OBJECT_LINEAR, EYE_LINEAR, SPHERE_MAP, REFLECTION_MAP_EXT, or
 NORMAL_MAP_EXT."

 Add these paragraphs after the 4th paragraph:

 "If TEXTURE_GEN_MODE indicates REFLECTION_MAP_EXT, compute the
 reflection vector r as described for the SPHERE_MAP mode. Then the
 value assigned to an s coordinate (the first TexGen argument value
 is S) is s = rx; the value assigned to a t coordinate is t = ry;
 and the value assigned to a r coordinate is r = rz. Calling TexGen
 with a <coord> of Q when <pname> indicates REFLECTION_MAP_EXT
 generates the error INVALID_ENUM.

 If TEXTURE_GEN_MODE indicates NORMAL_MAP_EXT, compute the normal
 vector nf as described in section 2.10.3. Then the value assigned
 to an s coordinate (the first TexGen argument value is S) is s =
 nfx; the value assigned to a t coordinate is t = nfy; and the
 value assigned to a r coordinate is r = nfz. (The values nfx, nfy,
 and nfz are the components of nf.) Calling TexGen with a <coord>
 of Q when <pname> indicates NORMAL_MAP_EXT generates the error
 INVALID_ENUM.

 The last paragraph's first sentence should be changed to:

 "The state required for texture coordinate generation comprises a
 five-valued integer for each coordinate indicating coordinate
 generation mode, ..."

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

 -- Section 3.6.5 "Pixel Transfer Operations" under "Convolution"

 Change this paragraph to say:

 ... "If CONVOLUTION_2D is enabled, the two-dimensional convolution
 filter is applied only to the two-dimensional images passed to
 DrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubImage2D,
 CopyTexImage2D, CopyTexSubImage2D, and CopyTexSubImage3D, and
 returned by GetTexImage with one of the targets TEXTURE_2D,
 TEXTURE_CUBE_MAP_POSITIVE_X_EXT, TEXTURE_CUBE_MAP_NEGATIVE_X_EXT,
 TEXTURE_CUBE_MAP_POSITIVE_Y_EXT, TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT,
 TEXTURE_CUBE_MAP_POSITIVE_Z_EXT, or TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT."

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

 81

 -- Section 3.8.1 "Texture Image Specification"

 Change the first full sentence on page 117 to:

 "<target> must be one of TEXTURE_2D for a 2D texture, or one of
 TEXTURE_CUBE_MAP_POSITIVE_X_EXT, TEXTURE_CUBE_MAP_NEGATIVE_X_EXT,
 TEXTURE_CUBE_MAP_POSITIVE_Y_EXT, TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT,
 TEXTURE_CUBE_MAP_POSITIVE_Z_EXT, or TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT
 for a cube map texture. Additionally, <target> can be either
 PROXY_TEXTURE_2D for a 2D proxy texture or PROXY_TEXTURE_CUBE_MAP_EXT
 for a cube map proxy texture as discussed in section 3.8.7."

 Add the following paragraphs after the first paragraph on page 117:

 "A 2D texture consists of a single 2D texture image. A cube
 map texture is a set of six 2D texture images. The six cube map
 texture targets form a single cube map texture though each target
 names a distinct face of the cube map. The TEXTURE_CUBE_MAP_*_EXT
 targets listed above update their appropriate cube map face 2D
 texture image. Note that the six cube map 2D image tokens such as
 TEXTURE_CUBE_MAP_POSITIVE_X_EXT are used when specifying, updating,
 or querying, one of a cube map's six 2D image, but when enabling
 cube map texturing or binding to a cube map texture object (that is
 when the cube map is accessed as a whole as opposed to a particular
 2D image), the TEXTURE_CUBE_MAP_EXT target is specified.

 When the target parameter to TexImage2D is one of the six cube map
 2D image targets, the error INVALID_VALUE is generated if the width
 and height parameters are not equal.

 If cube map texturing is enabled at the time a primitive is
 rasterized and if the set of six targets are not "cube complete",
 then it is as if texture mapping were disabled. The targets of
 a cube map texture are "cube complete" if the array 0 of all six
 targets have identical and square dimensions, the array 0 of all
 six targets were specified with the same internalformat, and
 the array 0 of all six targets have the same border width."

 After the 14th paragraph add:

 "In a similiar fashion, the maximum allowable width and height
 (they must be the same) of a cube map texture must be at least
 2^(k-lod)+2bt for image arrays level 0 through k, where k is the
 log base 2 of MAX_CUBE_MAP_TEXTURE_SIZE_EXT."

 -- Section 3.8.2 "Alternate Texture Image Specification Commands"

 Update the second paragraph (page 120) to say:

 ... "Currently, <target> must be
 TEXTURE_2D, TEXTURE_CUBE_MAP_POSITIVE_X_EXT,
 TEXTURE_CUBE_MAP_NEGATIVE_X_EXT, TEXTURE_CUBE_MAP_POSITIVE_Y_EXT,
 TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT, TEXTURE_CUBE_MAP_POSITIVE_Z_EXT,
 or TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT." ...

 Add after the second paragraph (page 120), the following:

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

 82

 "When the target parameter to CopyTexImage2D is one of the six cube
 map 2D image targets, the error INVALID_VALUE is generated if the
 width and height parameters are not equal."

 Update the fourth paragraph (page 121) to say:

 ... "Currently the target arguments of TexSubImage1D and
 CopyTexSubImage1D must be TEXTURE_1D, the <target> arguments of
 TexSubImage2D and CopyTexSubImage2D must be one of TEXTURE_2D,
 TEXTURE_CUBE_MAP_POSITIVE_X_EXT, TEXTURE_CUBE_MAP_NEGATIVE_X_EXT,
 TEXTURE_CUBE_MAP_POSITIVE_Y_EXT, TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT,
 TEXTURE_CUBE_MAP_POSITIVE_Z_EXT, or TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT,
 and the <target> arguments of TexSubImage3D and CopyTexSubImage3D
 must be TEXTURE_3D." ...

 -- Section 3.8.3 "Texture Parameters"

 Change paragraph one (page 124) to say:

 ... "<target> is the target, either TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT." ...

 Add a final paragraph saying:

 "Texture parameters for a cube map texture apply to cube map
 as a whole; the six distinct 2D texture images use the
 texture parameters of the cube map itself.

 -- Section 3.8.5 "Texture Minification" under "Mipmapping"

 Change the first full paragraph on page 130 to:

 ... "If texturing is enabled for one-, two-, or three-dimensional
 texturing but not cube map texturing (and TEXTURE_MIN_FILTER
 is one that requires a mipmap) at the time a primitive is
 rasterized and if the set of arrays TEXTURE_BASE_LEVEL through q =
 min{p,TEXTURE_MAX_LEVEL} is incomplete, based on the dimensions of
 array 0, then it is as if texture mapping were disabled."

 Follow the first full paragraph on page 130 with:

 "If cube map texturing is enabled and TEXTURE_MIN_FILTER is one that
 requires mipmap levels at the time a primitive is rasterized and
 if the set of six targets are not "mipmap cube complete", then it
 is as if texture mapping were disabled. The targets of a cube map
 texture are "mipmap cube complete" if the six cube map targets are
 "cube complete" and the set of arrays TEXTURE_BASE_LEVEL through
 q are not incomplete (as described above)."

 -- Section 3.8.7 "Texture State and Proxy State"

 Change the first sentence of the first paragraph (page 131) to say:

 "The state necessary for texture can be divided into two categories.
 First, there are the nine sets of mipmap arrays (three for the one-,
 two-, and three-dimensional texture targets and six for the cube

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

 83

 map texture targets) and their number." ...

 Change the second paragraph (page 132) to say:

 "In addition to the one-, two-, three-dimensional, and the six cube
 map sets of image arrays, the partially instantiated one-, two-,
 and three-dimensional and one cube map sets of proxy image arrays
 are maintained." ...

 After the third paragraph (page 132) add:

 "The cube map proxy arrays are operated on in the same manner
 when TexImage2D is executed with the <target> field specified as
 PROXY_TEXTURE_CUBE_MAP_EXT with the addition that determining that a
 given cube map texture is supported with PROXY_TEXTURE_CUBE_MAP_EXT
 indicates that all six of the cube map 2D images are supported.
 Likewise, if the specified PROXY_TEXTURE_CUBE_MAP_EXT is not
 supported, none of the six cube map 2D images are supported."

 Change the second sentence of the fourth paragraph (page 132) to:

 "Therefore PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D,
 and PROXY_TEXTURE_CUBE_MAP_EXT cannot be used as textures, and their
 images must never be queried using GetTexImage." ...

 -- Section 3.8.8 "Texture Objects"

 Change the first sentence of paragraph one (page 133) to say:

 "In addition to the default textures TEXTURE_1D, TEXTURE_2D,
 TEXTURE_3D, and TEXTURE_CUBE_MAP_EXT, named one-, two-,
 and three-dimensional texture objects and cube map texture objects
 can be created and operated on." ...

 Change the second paragraph (page 133) to say:

 "A texture object is created by binding an unused name to
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT." ...
 "If the new texture object is bound to TEXTURE_1D, TEXTURE_2D,
 TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT, it remains a one-, two-,
 three-dimensional, or cube map texture until it is deleted."

 Change the third paragraph (page 133) to say:

 "BindTexture may also be used to bind an existing texture object to
 either TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT."

 Change paragraph five (page 133) to say:

 "In the initial state, TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
 and TEXTURE_CUBE_MAP have one-dimensional, two-dimensional,
 three-dimensional, and cube map state vectors associated
 with them respectively." ... "The initial, one-dimensional,
 two-dimensional, three-dimensional, and cube map texture is therefore
 operated upon, queried, and applied as TEXTURE_1D, TEXTUER_2D,
 TEXTURE_3D, and TEXTURE_CUBE_MAP_EXT respectively while 0 is bound
 to the corresponding targets."

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

 84

 Change paragraph six (page 134) to say:

 ... "If a texture that is currently bound to one of the targets
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT is
 deleted, it is as though BindTexture has been executed with the
 same <target> and <texture> zero." ...

 -- Section 3.8.10 "Texture Application"

 Replace the beginning sentences of the first paragraph (page 136)
 with:

 "Texturing is enabled or disabled using the generic Enable
 and Disable commands, respectively, with the symbolic constants
 TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT to enable
 the one-dimensional, two-dimensional, three-dimensional, or cube
 map texturing respectively. If both two- and one-dimensional
 textures are enabled, the two-dimensional texture is used. If the
 three-dimensional and either of the two- or one-dimensional textures
 is enabled, the three-dimensional texture is used. If the cube map
 texture and any of the three-, two-, or one-dimensional textures is
 enabled, then cube map texturing is used. If texturing is disabled,
 a rasterized fragment is passed on unaltered to the next stage of the
 GL (although its texture coordinates may be discarded). Otherwise,
 a texture value is found according to the parameter values of the
 currently bound texture image of the appropriate dimensionality.

 However, when cube map texturing is enabled, the rules are
 more complicated. For cube map texturing, the (s,t,r) texture
 coordinates are treated as a direction vector (rx,ry,rz) emanating
 from the center of a cube. (The q coordinate can be ignored since
 it merely scales the vector without affecting the direction.) At
 texture application time, the interpolated per-fragment (s,t,r)
 selects one of the cube map face's 2D image based on the largest
 magnitude coordinate direction (the major axis direction). If two
 or more coordinates have the identical magnitude, the implementation
 may define the rule to disambiguate this situation. The rule must
 be deterministic and depend only on (rx,ry,rz). The target column
 in the table below explains how the major axis direction maps to the
 2D image of a particular cube map target.

 major axis
 direction target sc tc ma
 ---------- ------------------------------- --- --- ---
 +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
 -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
 +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
 -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
 +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
 -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz

 Using the sc, tc, and ma determined by the major axis direction as
 specified in the table above, an updated (s,t) is calculated as
 follows

 s = (sc/|ma| + 1) / 2

NVIDIA OpenGL Extension Specifications EXT_texture_cube_map

 85

 t = (tc/|ma| + 1) / 2

 If |ma| is zero or very nearly zero, the results of the above two
 equations need not be defined (though the result may not lead to
 GL interruption or termination).

 This new (s,t) is used to find a texture value in the determined
 face's 2D texture image using the rules given in sections 3.8.5
 and 3.8.6." ...

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

 -- Section 5.4 "Display Lists"

 In the second to the last paragraph (page 179), add
 PROXY_TEXTURE_CUBE_MAP_EXT to the list of PROXY_* tokens.

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 -- Section 6.1.3 "Enumerated Queries"

 Change the fourth paragraph (page 183) to say:

 "The GetTexParameter parameter <target> may be one of TEXTURE_1D,
 TEXTURE_2D, TEXTURE_3D, or TEXTURE_CUBE_MAP_EXT, indicating the
 currently bound one-dimensional, two-dimensional, three-dimensional,
 or cube map texture object. For GetTexLevelParameter,
 <target> may be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
 TEXTURE_CUBE_MAP_POSITIVE_X_EXT, TEXTURE_CUBE_MAP_NEGATIVE_X_EXT,
 TEXTURE_CUBE_MAP_POSITIVE_Y_EXT, TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT,
 TEXTURE_CUBE_MAP_POSITIVE_Z_EXT, TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT,
 PROXY_TEXTURE_1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_3D, or
 PROXY_TEXTURE_CUBE_MAP_EXT, indicating the one-dimensional,
 two-dimensional, three-dimensional texture object, or distinct
 cube map texture 2D image, or one-dimensional, two-dimensional,
 three-dimensional, or cube map proxy state vector. Note that
 TEXTURE_CUBE_MAP_EXT is not a valid <target> parameter for
 GetTexLevelParameter because it does not specify a particular cube
 map face."

 -- Section 6.1.4 "Texture Queries"

 Change the first paragraph to read:

 ... "It is somewhat different from the other get commands; <tex>
 is a symbolic value indicating which texture (or texture face in the
 case of a cube map texture target name) is to be obtained.
 TEXTURE_1D indicates a one-dimensional texture, TEXTURE_2D
 indicates a two-dimensional texture, TEXTURE_3D indicates a
 three-dimensional texture, and TEXTURE_CUBE_MAP_POSITIVE_X_EXT,
 TEXTURE_CUBE_MAP_NEGATIVE_X_EXT, TEXTURE_CUBE_MAP_POSITIVE_Y_EXT,
 TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT, TEXTURE_CUBE_MAP_POSITIVE_Z_EXT,

EXT_texture_cube_map NVIDIA OpenGL Extension Specifications

 86

 and TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT indicate the respective face of
 a cube map texture.

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated when TexGen is called with a <coord> of Q
 when <pname> indicates REFLECTION_MAP_EXT or NORMAL_MAP_EXT.

 INVALID_VALUE is generated when the target parameter to TexImage2D
 or CopyTexImage2D is one of the six cube map 2D image targets and
 the width and height parameters are not equal.

New State

(table 6.12, p202) add the following entries:

Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- ------ --------------
TEXTURE_CUBE_MAP_EXT B IsEnabled False True if cube map 3.8.10 texture/enable
 texturing is enabled
TEXTURE_BINDING_CUBE_MAP_EXT Z+ GetIntegerv 0 Texture object 3.8.8 texture
 for TEXTURE_CUBE_MAP
TEXTURE_CUBE_MAP_POSITIVE_X_EXT nxI GetTexImage see 3.8 positive x face 3.8 -
 cube map texture
 image at lod i
TEXTURE_CUBE_MAP_NEGATIVE_X_EXT nxI GetTexImage see 3.8 negative x face 3.8 -
 cube map texture
 image at lod i
TEXTURE_CUBE_MAP_POSITIVE_Y_EXT nxI GetTexImage see 3.8 positive y face 3.8 -
 cube map texture
 image at lod i
TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT nxI GetTexImage see 3.8 negative y face 3.8 -
 cube map texture
 image at lod i
TEXTURE_CUBE_MAP_POSITIVE_Z_EXT nxI GetTexImage see 3.8 positive z face 3.8 -
 cube map texture
 image at lod i
TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT nxI GetTexImage see 3.8 negative z face 3.8 -
 cube map texture
 image at lod i

(table 6.14, p204) change the entry for TEXTURE_GEN_MODE to:

Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- ------ ---------
TEXTURE_GEN_MODE 4xZ5 GetTexGeniv EYE_LINEAR Function used for 2.10.4 texture
 texgen (for s,t,r,
 and q)

(the type changes from 4xZ3 to 4xZ5)

New Implementation Dependent State

(table 6.24, p214) add the following entry:

Get Value Type Get Command Minimum Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- ------ --------------
MAX_CUBE_MAP_TEXTURE_SIZE_EXT Z+ GetIntegerv 16 Maximum cube map 3.8.1 -
 texture image
 dimension

NVIDIA OpenGL Extension Specifications EXT_texture_edge_clamp

 87

Name

 EXT_texture_edge_clamp

Name Strings

 GL_EXT_texture_edge_clamp

Version

 $Date: 1997/09/22 23:04:01 $ $Revision: 1.1 $

Dependencies

 SGIS_texture_filter4 affects the definition of this extension

Overview

 The base OpenGL provides clamping such that the texture coordinates are
 limited to exactly the range [0,1]. When a texture coordinate is
 clamped using this algorithm, the texture sampling filter straddles the
 edge of the texture image, taking 1/2 its sample values from within the
 texture image, and the other 1/2 from the texture border. It is
 sometimes desirable to clamp a texture without requiring a border, and
 without using the constant border color.

 This extension defines a new texture clamping algorithm.
 CLAMP_TO_EDGE_EXT clamps texture coordinates at all mipmap levels such
 that the texture filter never samples a border texel. When used with a
 NEAREST or a LINEAR filter, the color returned when clamping is derived
 only from texels at the edge of the texture image. When used with
 FILTER4 filters, the filter operations of CLAMP_TO_EDGE_EXT are defined
 but don't result in a nice clamp-to-edge color.

 CLAMP_TO_EDGE_EXT is supported by 1, 2, and 3-dimensional textures
 only.

Issues

 * Is the arithmetic for FILTER4 filters correct? Is this the right
 thing to do?

New Procedures and Functions

 None

New Tokens

 Accepted by the <param> parameter of TexParameteri and TexParameterf,
 and by the <params> parameter of TexParameteriv and TexParameterfv, when
 their <pname> parameter is TEXTURE_WRAP_S, TEXTURE_WRAP_T, or
 TEXTURE_WRAP_R:

 CLAMP_TO_EDGE_EXT 0x812F

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

 None

EXT_texture_edge_clamp NVIDIA OpenGL Extension Specifications

 88

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

 GL Specification Table 3.7 is updated as follows:

 Name Type Legal Values
 ---- ---- ------------
 TEXTURE_WRAP_S integer CLAMP, REPEAT,
 CLAMP_TO_EDGE_EXT
 TEXTURE_WRAP_T integer CLAMP, REPEAT,
 CLAMP_TO_EDGE_EXT
 TEXTURE_WRAP_R integer CLAMP, REPEAT,
 CLAMP_TO_EDGE_EXT
 TEXTURE_MIN_FILTER integer NEAREST, LINEAR,
 NEAREST_MIPMAP_NEAREST,
 NEAREST_MIPMAP_LINEAR,
 LINEAR_MIPMAP_NEAREST,
 LINEAR_MIPMAP_LINEAR,
 FILTER4_SGIS,
 LINEAR_CLIPMAP_LINEAR_SGIX
 TEXTURE_MAG_FILTER integer NEAREST, LINEAR,
 FILTER4_SGIS,
 LINEAR_DETAIL_SGIS,
 LINEAR_DETAIL_ALPHA_SGIS,
 LINEAR_DETAIL_COLOR_SGIS,
 LINEAR_SHARPEN_SGIS,
 LINEAR_SHARPEN_ALPHA_SGIS,
 LINEAR_SHARPEN_COLOR_SGIS,
 LINEAR_LEQUAL_R_SGIS,
 LINEAR_GEQUAL_R_SGIS
 TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
 DETAIL_TEXTURE_LEVEL_SGIS integer any non-negative integer
 DETAIL_TEXTURE_MODE_SGIS integer ADD, MODULATE
 TEXTURE_MIN_LOD float any value
 TEXTURE_MAX_LOD float any value
 TEXTURE_BASE_LEVEL integer any non-negative integer
 TEXTURE_MAX_LEVEL integer any non-negative integer
 GENERATE_MIPMAP_SGIS boolean TRUE or FALSE
 TEXTURE_CLIPMAP_OFFSET_SGIX 2 floats any 2 values

 Table 3.7: Texture parameters and their values.

 CLAMP_TO_EDGE_EXT texture clamping is specified by calling
 TexParameteri with <target> set to TEXTURE_1D, TEXTURE_2D, or
 TEXTURE_3D, <pname> set to TEXTURE_WRAP_S, TEXTURE_WRAP_T,
 or TEXTURE_WRAP_R, and <param> set to CLAMP_TO_EDGE_EXT.

 Let [min,max] be the range of a clamped texture coordinate, and let N
 be the size of the 1D, 2D, or 3D texture image in the direction of
 clamping. Then in all cases

 max = 1 - min

 because the clamping is always symmetric about the [0,1] mapped range of
 a texture coordinate. When used with NEAREST or LINEAR filters,
 CLAMP_TO_EDGE_EXT defines a minimum clamping value of

 min = 1 / 2*N

NVIDIA OpenGL Extension Specifications EXT_texture_edge_clamp

 89

 When used with FILTER4 filters, CLAMP_TO_EDGE_EXT defines a minimum
 clamping value of

 min = 3 / 2*N, N > 2

 min = 1/2 N <= 2

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

Dependencies on SGIS_texture_filter4

 If SGIS_texture_filter4 is not implemented, then discussions about the
 interaction of filter4 texture filters and the clamping function
 described in this file are invalid, and should be ignored.

Errors

 None

New State

 Only the type information changes for these parameters:

 Get Value Get Command Type Initial Value Attrib
 --------- ----------- ---- ------------- ------
 TEXTURE_WRAP_S GetTexParameteriv n x Z3 REPEAT texture
 TEXTURE_WRAP_T GetTexParameteriv n x Z3 REPEAT texture
 TEXTURE_WRAP_R GetTexParameteriv n x Z3 REPEAT texture

New Implementation Dependent State

 None

EXT_texture_env_add NVIDIA OpenGL Extension Specifications

 90

Name

 EXT_texture_env_add

Name Strings

 GL_EXT_texture_env_add

Contact

 Michael Gold, NVIDIA (gold 'at' nvidia.com)
 Tom Frisinger, ATI (tfrisinger 'at' atitech.com)

Status

 Shipping (version 1.6)

Version

 $Date: 1999/03/22 17:28:00 $ $Revision: 1.1 $

Number

 185

Dependencies

 None

Overview

 New texture environment function ADD is supported with the following
 equation:
 Cv = Cf + Ct

 New function may be specified by calling TexEnv with ADD token.

New Procedures and Functions

 None

New Tokens

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnvfi when the <pname> parameter value is GL_TEXTURE_ENV_MODE

 ADD

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

NVIDIA OpenGL Extension Specifications EXT_texture_env_add

 91

 Texture Environment

 Base Texture Format REPLACE MODULATE BLEND DECAL ADD
 ------------------- ------- -------- ----- ----- ---

 ALPHA Rv = Rf
 Gv = Gf
 Bv = Bf
 Av = AfAt

 LUMINANCE Rv = Rf+Lt
 Gv = Gf+Lt
 Bv = Bf+Lt
 Av = Af

 LUMINANCE_ALPHA Rv = Rf+Lt
 Gv = Gf+Lt
 Bv = Bf+Lt
 Av = AfAt

 INTENSITY Rv = Rf+It
 Gv = Gf+It
 Bv = Bf+It
 Av = Af+It

 RGB Rv = Rf+Rt
 Gv = Gf+Gt
 Bv = Bf+Bt
 Av = Af

 RGBA Rv = Rf+Rt
 Gv = Gf+Gt
 Bv = Bf+Bt
 Av = AfAt

 Table 3.11: Texture functions.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX / WGL / AGL Specifications

 None

EXT_texture_env_add NVIDIA OpenGL Extension Specifications

 92

GLX Protocol

 None

Errors

 None

New State

 None

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

 93

Name

 EXT_texture_env_combine

Name Strings

 GL_EXT_texture_env_combine

Version

 $Date: 1999/04/02 13:54:17 $ $Revision: 1.7 $

Number

 158

Dependencies

 SGI_texture_color_table affects the definition of this extension
 SGIX_texture_scale_bias affects the definition of this extension

Overview

 New texture environment function COMBINE_EXT allows programmable
 texture combiner operations, including:

 REPLACE Arg0
 MODULATE Arg0 * Arg1
 ADD Arg0 + Arg1
 ADD_SIGNED_EXT Arg0 + Arg1 - 0.5
 INTERPOLATE_EXT Arg0 * (Arg2) + Arg1 * (1-Arg2)

 where Arg0, Arg1 and Arg2 are derived from

 PRIMARY_COLOR_EXT primary color of incoming fragment
 TEXTURE texture color of corresponding texture unit
 CONSTANT_EXT texture environment constant color
 PREVIOUS_EXT result of previous texture environment; on
 texture unit 0, this maps to PRIMARY_COLOR_EXT

 and Arg2 is restricted to the alpha component of the corresponding source.

 In addition, the result may be scaled by 1.0, 2.0 or 4.0.

Issues

 Should the explicit bias be removed in favor of an implcit bias as
 part of a ADD_SIGNED_EXT function?

 - Yes. This pre-scale bias is a special case and will be treated
 as such.

 Should the primary color of the incoming fragment be available to
 all texture environments? Currently it is only available to the
 texture environment of texture unit 0.

 - Yes, PRIMARY_COLOR_EXT has been added as an input source.

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

 94

 Should textures from other texture units be allowed as sources?

 - No, not in the base spec. Too many vendors have expressed
 concerns about the scalability of such functionality. This can
 be added as a subsequent extension.

 All of the 1.2 modes except BLEND can be expressed in terms of
 this extension. Should texture color be allowed as a source for
 Arg2, so all of the 1.2 modes can be expressed? If so, should all
 color sources be allowed, to maintain orthogonality?

 - No, not in the base spec. This can be added as a subsequent
 extension.

New Procedures and Functions

 None

New Tokens

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value is TEXTURE_ENV_MODE

 COMBINE_EXT 0x8570

 Accepted by the <pname> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <target> parameter value is TEXTURE_ENV

 COMBINE_RGB_EXT 0x8571
 COMBINE_ALPHA_EXT 0x8572
 SOURCE0_RGB_EXT 0x8580
 SOURCE1_RGB_EXT 0x8581
 SOURCE2_RGB_EXT 0x8582
 SOURCE0_ALPHA_EXT 0x8588
 SOURCE1_ALPHA_EXT 0x8589
 SOURCE2_ALPHA_EXT 0x858A
 OPERAND0_RGB_EXT 0x8590
 OPERAND1_RGB_EXT 0x8591
 OPERAND2_RGB_EXT 0x8592
 OPERAND0_ALPHA_EXT 0x8598
 OPERAND1_ALPHA_EXT 0x8599
 OPERAND2_ALPHA_EXT 0x859A
 RGB_SCALE_EXT 0x8573
 ALPHA_SCALE

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value is COMBINE_RGB_EXT
 or COMBINE_ALPHA_EXT

 REPLACE
 MODULATE
 ADD
 ADD_SIGNED_EXT 0x8574
 INTERPOLATE_EXT 0x8575

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

 95

 and TexEnviv when the <pname> parameter value is SOURCE0_RGB_EXT,
 SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE0_ALPHA_EXT,
 SOURCE1_ALPHA_EXT, or SOURCE2_ALPHA_EXT

 TEXTURE
 CONSTANT_EXT 0x8576
 PRIMARY_COLOR_EXT 0x8577
 PREVIOUS_EXT 0x8578

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value is
 OPERAND0_RGB_EXT or OPERAND1_RGB_EXT

 SRC_COLOR
 ONE_MINUS_SRC_COLOR
 SRC_ALPHA
 ONE_MINUS_SRC_ALPHA

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value is
 OPERAND0_ALPHA_EXT or OPERAND1_ALPHA_EXT

 SRC_ALPHA
 ONE_MINUS_SRC_ALPHA

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value is
 OPERAND2_RGB_EXT or OPERAND2_ALPHA_EXT

 SRC_ALPHA

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv,
 and TexEnviv when the <pname> parameter value is RGB_SCALE_EXT or
 ALPHA_SCALE

 1.0
 2.0
 4.0

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

 Added to subsection 3.8.9, before the paragraph describing the
 state requirements:

 If the value of TEXTURE_ENV_MODE is COMBINE_EXT, the form of the
 texture function depends on the values of COMBINE_RGB_EXT and
 COMBINE_ALPHA_EXT, according to table 3.20. The RGB and ALPHA
 results of the texture function are then multiplied by the values
 of RGB_SCALE_EXT and ALPHA_SCALE, respectively. The results are
 clamped to [0,1].

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

 96

 COMBINE_RGB_EXT or
 COMBINE_ALPHA_EXT Texture Function
 ------------------ ----------------
 REPLACE Arg0
 MODULATE Arg0 * Arg1
 ADD Arg0 + Arg1
 ADD_SIGNED_EXT Arg0 + Arg1 - 0.5
 INTERPOLATE_EXT Arg0 * (Arg2) + Arg1 * (1-Arg2)

 Table 3.20: COMBINE_EXT texture functions

 The arguments Arg0, Arg1 and Arg2 are determined by the values of
 SOURCE<n>_RGB_EXT, SOURCE<n>_ALPHA_EXT, OPERAND<n>_RGB_EXT and
 OPERAND<n>_ALPHA_EXT. In the following two tables, Ct and At are
 the filtered texture RGB and alpha values; Cc and Ac are the
 texture environment RGB and alpha values; Cf and Af are the RGB
 and alpha of the primary color of the incoming fragment; and Cp
 and Ap are the RGB and alpha values resulting from the previous
 texture environment. On texture environment 0, Cp and Ap are
 identical to Cf and Af, respectively. The relationship is
 described in tables 3.21 and 3.22.

 SOURCE<n>_RGB_EXT OPERAND<n>_RGB_EXT Argument
 ----------------- -------------- --------
 TEXTURE SRC_COLOR Ct
 ONE_MINUS_SRC_COLOR (1-Ct)
 SRC_ALPHA At
 ONE_MINUS_SRC_ALPHA (1-At)
 CONSTANT_EXT SRC_COLOR Cc
 ONE_MINUS_SRC_COLOR (1-Cc)
 SRC_ALPHA Ac
 ONE_MINUS_SRC_ALPHA (1-Ac)
 PRIMARY_COLOR_EXT SRC_COLOR Cf
 ONE_MINUS_SRC_COLOR (1-Cf)
 SRC_ALPHA Af
 ONE_MINUS_SRC_ALPHA (1-Af)
 PREVIOUS_EXT SRC_COLOR Cp
 ONE_MINUS_SRC_COLOR (1-Cp)
 SRC_ALPHA Ap
 ONE_MINUS_SRC_ALPHA (1-Ap)

 Table 3.21: Arguments for COMBINE_RGB_EXT functions

 SOURCE<n>_ALPHA_EXT OPERAND<n>_ALPHA_EXT Argument
 ----------------- -------------- --------
 TEXTURE SRC_ALPHA At
 ONE_MINUS_SRC_ALPHA (1-At)
 CONSTANT_EXT SRC_ALPHA Ac
 ONE_MINUS_SRC_ALPHA (1-Ac)
 PRIMARY_COLOR_EXT SRC_ALPHA Af
 ONE_MINUS_SRC_ALPHA (1-Af)
 PREVIOUS_EXT SRC_ALPHA Ap
 ONE_MINUS_SRC_ALPHA (1-Ap)

 Table 3.22: Arguments for COMBINE_ALPHA_EXT functions

 The mapping of texture components to source components is

NVIDIA OpenGL Extension Specifications EXT_texture_env_combine

 97

 summarized in Table 3.23. In the following table, At, Lt, It, Rt,
 Gt and Bt are the filtered texel values.

 Base Internal Format RGB Values Alpha Value
 -------------------- ---------- -----------
 ALPHA 0, 0, 0 At
 LUMINANCE Lt, Lt, Lt 1
 LUMINANCE_ALPHA Lt, Lt, Lt At
 INTENSITY It, It, It It
 RGB Rt, Gt, Bt 1
 RGBA Rt, Gt, Bt At

 Table 3.23: Correspondence of texture components to source
 components for COMBINE_RGB_EXT and COMBINE_ALPHA_EXT arguments

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 INVALID_ENUM is generated if <params> value for COMBINE_RGB_EXT or
 COMBINE_ALPHA_EXT is not one of REPLACE, MODULATE, ADD,
 ADD_SIGNED_EXT, or INTERPOLATE_EXT.

 INVALID_ENUM is generated if <params> value for SOURCE0_RGB_EXT,
 SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE0_ALPHA_EXT,
 SOURCE1_ALPHA_EXT or SOURCE2_ALPHA_EXT is not one of TEXTURE,
 CONSTANT_EXT, PRIMARY_COLOR_EXT or PREVIOUS_EXT.

 INVALID_ENUM is generated if <params> value for OPERAND0_RGB_EXT
 or OPERAND1_RGB_EXT is not one of SRC_COLOR, ONE_MINUS_SRC_COLOR,
 SRC_ALPHA or ONE_MINUS_SRC_ALPHA.

 INVALID_ENUM is generated if <params> value for OPERAND0_ALPHA_EXT
 or OPERAND1_ALPHA_EXT is not one of SRC_ALPHA or
 ONE_MINUS_SRC_ALPHA.

 INVALID_ENUM is generated if <params> value for OPERAND2_RGB_EXT
 or OPERAND2_ALPHA_EXT is not SRC_ALPHA.

EXT_texture_env_combine NVIDIA OpenGL Extension Specifications

 98

 INVALID_VALUE is generated if <params> value for RGB_SCALE_EXT or
 ALPHA_SCALE is not one of 1.0, 2.0, or 4.0.

Dependencies on SGI_texture_color_table

 If SGI_texture_color_table is implemented, the expanded Rt, Gt,
 Bt, and At values are used directly instead of the expansion
 described by Table 3.23.

Dependencies on SGIX_texture_scale_bias

 If SGIX_texture_scale_bias is implemented, the expanded Rt, Gt,
 Bt, and At values are used directly instead of the expansion
 described by Table 3.23.

New State

 Get Value Get Command Type Initial Value Attribute
 --------- ----------- ---- ------------- ---------
 COMBINE_RGB_EXT GetTexEnviv n x Z4 MODULATE texture
 COMBINE_ALPHA_EXT GetTexEnviv n x Z4 MODULATE texture
 SOURCE0_RGB_EXT GetTexEnviv n x Z3 TEXTURE texture
 SOURCE1_RGB_EXT GetTexEnviv n x Z3 PREVIOUS_EXT texture
 SOURCE2_RGB_EXT GetTexEnviv n x Z3 CONSTANT_EXT texture
 SOURCE0_ALPHA_EXT GetTexEnviv n x Z3 TEXTURE texture
 SOURCE1_ALPHA_EXT GetTexEnviv n x Z3 PREVIOUS_EXT texture
 SOURCE2_ALPHA_EXT GetTexEnviv n x Z3 CONSTANT_EXT texture
 OPERAND0_RGB_EXT GetTexEnviv n x Z6 SRC_COLOR texture
 OPERAND1_RGB_EXT GetTexEnviv n x Z6 SRC_COLOR texture
 OPERAND2_RGB_EXT GetTexEnviv n x Z1 SRC_ALPHA texture
 OPERAND0_ALPHA_EXT GetTexEnviv n x Z4 SRC_ALPHA texture
 OPERAND1_ALPHA_EXT GetTexEnviv n x Z4 SRC_ALPHA texture
 OPERAND2_ALPHA_EXT GetTexEnviv n x Z1 SRC_ALPHA texture
 RGB_SCALE_EXT GetTexEnvfv n x R3 1.0 texture
 ALPHA_SCALE GetTexEnvfv n x R3 1.0 texture

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

 99

Name

 EXT_texture_filter_anisotropic

Name Strings

 GL_EXT_texture_filter_anisotropic

Notice

 Copyright NVIDIA Corporation, 1999.

Version

 August 24, 1999

Number

 ??

Dependencies

 Written based on the wording of the OpenGL 1.2 specification.

Overview

 Texture mapping using OpenGL's existing mipmap texture filtering
 modes assumes that the projection of the pixel filter footprint into
 texture space is a square (ie, isotropic). In practice however, the
 footprint may be long and narrow (ie, anisotropic). Consequently,
 mipmap filtering severely blurs images on surfaces angled obliquely
 away from the viewer.

 Several approaches exist for improving texture sampling by accounting
 for the anisotropic nature of the pixel filter footprint into texture
 space. This extension provides a general mechanism for supporting
 anisotropic texturing filtering schemes without specifying a
 particular formulation of anisotropic filtering.

 The extension permits the OpenGL application to specify on
 a per-texture object basis the maximum degree of anisotropy to
 account for in texture filtering.

 Increasing a texture object's maximum degree of anisotropy may
 improve texture filtering but may also significantly reduce the
 implementation's texture filtering rate. Implementations are free
 to clamp the specified degree of anisotropy to the implementation's
 maximum supported degree of anisotropy.

 A texture's maximum degree of anisotropy is specified independent
 from the texture's minification and magnification filter (as
 opposed to being supported as an entirely new filtering mode).
 Implementations are free to use the specified minification and
 magnification filter to select a particular anisotropic texture
 filtering scheme. For example, a NEAREST filter with a maximum
 degree of anisotropy of two could be treated as a 2-tap filter that

EXT_texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

 100

 accounts for the direction of anisotropy. Implementations are also
 permitted to ignore the minification or magnification filter and
 implement the highest quality of anisotropic filtering possible.

 Applications seeking the highest quality anisotropic filtering
 available are advised to request a LINEAR_MIPMAP_LINEAR minification
 filter, a LINEAR magnification filter, and a large maximum degree
 of anisotropy.

Issues

 Should there be a particular anisotropic texture filtering minification
 and magnification mode?

 RESOLUTION: NO. The maximum degree of anisotropy should control
 when anisotropic texturing is used. Making this orthogonal to
 the minification and magnification filtering modes allows these
 settings to influence the anisotropic scheme used. Yes, such
 an anisotropic filtering scheme exists in hardware.

 What should the minimum value for MAX_TEXTURE_MAX_ANISTROPY_EXT be?

 RESOLUTION: 2.0. To support this extension, at least 2 to 1
 anisotropy should be supported.

 Should an implementation-defined limit for the maximum maximum degree of
 anisotropy be "get-able"?

 RESOLUTION: YES. But you should not assume that a high maximum
 maximum degree of anisotropy implies anything about texture
 filtering performance or quality.

 Should anything particular be said about anisotropic 3D texture filtering?

 Not sure. Does the implementation example shown in the spec for
 2D anisotropic texture filtering readily extend to 3D anisotropic
 texture filtering?

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameters of GetTexParameterfv,
 GetTexParameteriv, TexParameterfv and TexParameteriv:

 TEXTURE_MAX_ANISOTROPY_EXT 0x84fe

 Accepted by the <pname> parameters of GetBooleanv, GetDoublev,
 GetFloatv, and GetIntegerv:

 MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84ff

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

 None

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

 101

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

 -- Sections 3.8.3 "Texture Parameters"

 Add the following entry to the end of Table 3.17:

 Name Type Legal Values
 -------------------------- ------ --------------------------
 TEXTURE_MAX_ANISOTROPY_EXT float greater or equal to 1.0

 -- Sections 3.8.5 "Texture Minification" and 3.8.6 "Texture Magnification"

 After the first paragraph in Section 3.8.5:

 "When the texture's value of TEXTURE_MAX_ANISOTROPY_EXT is equal to 1.0,
 the GL uses an isotropic texture filtering approach as described in
 this section and Section 3.8.6. However, when the texture's value
 of TEXTURE_MAX_ANISOTROPY_EXT is greater than 1.0, the GL implementation
 should use a texture filtering scheme that accounts for a degree
 of anisotropy up to the smaller of the value of TEXTURE_MAX_ANISTROPY_EXT
 or the implementation-defined value of MAX_TEXTURE_MAX_ANISTROPY_EXT.

 The particular scheme for anisotropic texture filtering is
 implementation dependent. Additionally, implementations are free
 to consider the current texture minification and magnification modes
 to control the specifics of the anisotropic filtering scheme used.

 The anisotropic texture filtering scheme may only access mipmap
 levels if the minification filter is one that requires mipmaps.
 Additionally, when a minification filter is specified, the
 anisotropic texture filtering scheme may only access texture mipmap
 levels between the texture's values for TEXTURE_BASE_LEVEL and
 TEXTURE_MAX_LEVEL, inclusive. Implementations are also recommended
 to respect the values of TEXTURE_MAX_LOD and TEXTURE_MIN_LOD to
 whatever extent the particular anisotropic texture filtering
 scheme permits this."

 The following describes one particular approach to implementing
 anisotropic texture filtering for the 2D texturing case:

 "Anisotropic texture filtering substantially changes Section 3.8.5.
 Previously a single scale factor P was determined based on the
 pixel's projection into texture space. Now two scale factors,
 Px and Py, are computed.

 Px = sqrt(dudx^2 + dvdx^2)
 Py = sqrt(dudy^2 + dvdy^2)

 Pmax = max(Px,Py)
 Pmin = min(Px,Py)

 N = min(ceil(Pmax/Pmin),maxAniso);
 Lamda' = log2(Pmax/N)

EXT_texture_filter_anisotropic NVIDIA OpenGL Extension Specifications

 102

 where maxAniso is the smaller of the texture's value of
 TEXTURE_MAX_ANISOTROPY_EXT or the implementation-defined value of
 MAX_TEXTURE_MAX_ANISOTROPY_EXT.

 It is acceptable for implementation to round 'N' up to the nearest
 supported sampling rate. For example an implementation may only
 support power-of-two sampling rates.

 It is also acceptable for an implementation to approximate the ideal
 functions Px and Py with functions Fx and Fy subject to the following
 conditions:

 1. Fx is continuous and monotonically increasing in |du/dx| and |dv/dx|.
 Fy is continuous and monotonically increasing in |du/dy| and |dv/dy|.

 2. max(|du/dx|,|dv/dx|} <= Fx <= |du/dx| + |dv/dx|.
 max(|du/dy|,|dv/dy|} <= Fy <= |du/dy| + |dv/dy|.

 Instead of a single sample, Tau, at (u,v,Lamda), 'N' locations in the
 mipmap at LOD Lamda, are sampled within the texture footprint of the pixel.
 This sum TauAniso is defined using the single sample Tau. When the
 texture's value of TEXTURE_MAX_ANISOTROPHY_EXT is greater than 1.0, use
 TauAniso instead of Tau to determine the fragment's texture value.

 i=N

 TauAniso = 1/N \ Tau(u(x - 1/2 + i/(N+1), y), v(x - 1/2 + i/(N+1), y)), Px > Py
 /

 i=1

 i=N

 TauAniso = 1/N \ Tau(u(x, y - 1/2 + i/(N+1)), v(x, y - 1/2 + i/(N+1))), Py >= Px
 /

 i=1

 It is acceptable to approximate the u and v functions with equally spaced
 samples in texture space at LOD Lamda:

 i=N

 TauAniso = 1/N \ Tau(u(x,y)+dudx(i/(N+1)-1/2), v(x,y)+dvdx(i/(N+1)-1/2)), Px > Py
 /

 i=1

 i=N

 TauAniso = 1/N \ Tau(u(x,y)+dudy(i/(N+1)-1/2), v(x,y)+dvdy(i/(N+1)-1/2)), Py >= Px
 /

 i=1

 "

NVIDIA OpenGL Extension Specifications EXT_texture_filter_anisotropic

 103

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

Errors

 INVALID_VALUE is generated when TexParameter is called with <pname>
 of TEXTURE_MAX_ANISOTROPY_EXT and a <param> value or value of what
 <params> points to less than 1.0.

New State

(table 6.13, p203) add the entry:

Get Value Type Get Command Initial Value Description Sec Attribute
-------------------------- ---- ----------------- -------------- --------------- ----- ---------
TEXTURE_MAX_ANISOTROPY_EXT R GetTexParameterfv 1.0 Maximum degree 3.8.5 texture
 of anisotropy

New Implementation State

(table 6.25, p215) add the entry:

Get Value Type Get Command Minimum Value Description Sec Attribute
------------------------------ ---- ------------ -------------- --------------- ----- ---------
MAX_TEXTURE_MAX_ANISOTROPY_EXT R GetFloatv 2.0 Limit of 3.8.5 -
 maximum degree
 of anisotropy

EXT_texture_lod_bias NVIDIA OpenGL Extension Specifications

 104

Name

 EXT_texture_lod_bias

Name Strings

 GL_EXT_texture_lod_bias

Notice

 Copyright NVIDIA Corporation, 1999.

Version

 August 24, 1999

Number

 ??

Dependencies

 Written based on the wording of the OpenGL 1.2 specification.

 Affects ARB_multitexture.

Overview

 OpenGL computes a texture level-of-detail parameter, called lambda
 in the GL specification, that determines which mipmap levels and
 their relative mipmap weights for use in mipmapped texture filtering.

 This extension provides a means to bias the lambda computation
 by a constant (signed) value. This bias can provide a way to blur
 or pseudo-sharpen OpenGL's standard texture filtering.

 This blurring or pseudo-sharpening may be useful for special effects
 (such as depth-of-field effects) or image processing techniques
 (where the mipmap levels act as pre-downsampled image versions).
 On some implementations, increasing the texture lod bias may improve
 texture filtering performance (at the cost of texture bluriness).

 The extension mimics functionality found in Direct3D.

Issues

 Should the texture LOD bias be settable per-texture unit or
 per-texture stage?

 RESOLUTION: Per-texture stage. This matches the Direct3D
 semantics for texture lod bias. Note that this differs from
 the semantics of SGI's SGIX_texture_lod_bias extension that
 has the biases per-texture object.

 This also allows the same texture object to be used by two different
 texture units for different blurring. Not sure how useful this is.

NVIDIA OpenGL Extension Specifications EXT_texture_lod_bias

 105

 How does EXT_texture_lod_bias differ from SGIX_texture_lod bias?

 EXT_texture_lod_bias adds a bias to lambda. The
 SGIX_texture_lod_bias extension changes the computation of rho (the
 log2 of which is lambda). The SGIX extension provides separate
 biases in each texture dimension. The EXT extension does not
 provide an "directionality" in the LOD control.

 Does the texture lod bias occur before or after the TEXTURE_MAX_LOD
 and TEXTURE_MIN_LOD clamping?

 RESOLUTION: BEFORE. This allows the texture lod bias to still
 be clamped within the max/min lod range.

 Does anything special have to be said to keep the biased lambda value
 from being less than zero or greater than the maximum number of
 mipmap levels?

 RESOLUTION: NO. The existing clamping in the specification
 handles these situations.

 The texture lod bias is specified to be a float. In practice, what
 sort of range is assumed for the texture lod bias?

 RESOLUTION: The MAX_TEXTURE_LOD_BIAS_EXT implementation constant
 advertises the maximum absolute value of the supported texture
 lod bias. The value is recommended to be at least the maximum
 mipmap level supported by the implementation.

 The texture lod bias is specified to be a float. In practice, what
 sort of precision is assumed for the texture lod bias?

 RESOLUTION; This is implementation dependent. Presumably,
 hardware would implement the texture lod bias as a fractional bias
 but the exact fractional precision supported is implementation
 dependent. At least 4 fractional bits is recommended.

New Procedures and Functions

 None

New Tokens

 Accepted by the <target> parameters of GetTexEnvfv, GetTexEnviv,
 TexEnvi, TexEnvf, Texenviv, and TexEnvfv:

 TEXTURE_FILTER_CONTROL_EXT 0x8500

 When the <target> parameter of GetTexEnvfv, GetTexEnviv, TexEnvi,
 TexEnvf, TexEnviv, and TexEnvfv is TEXTURE_FILTER_CONTROL_EXT, then
 the value of <pname> may be:

 TEXTURE_LOD_BIAS_EXT 0x8501

 Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

EXT_texture_lod_bias NVIDIA OpenGL Extension Specifications

 106

 MAX_TEXTURE_LOD_BIAS_EXT 0x84fd

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

 -- Section 3.8.5 "Texture Minification"

 Change the first formula under "Scale Factor and Level of Detail" to read:

 "The choice is governed by a scale factor p(x,y), the level of detail
 parameter lambda(x,y), defined as

 lambda'(x,y) = log2[p(x,y)] + lodBias

 where lodBias is the texture unit's (signed) texture lod bias parameter
 (as described in Section 3.8.9) clamped between the positive and negative
 values of the implementation defined constant MAX_TEXTURE_LOD_BIAS_EXT."

 -- Section 3.8.9 "Texture Environments and Texture Functions"

 Change the first paragraph to read:

 "The command

 void TexEnv{if}(enum target, enum pname, T param);
 void TexEnv{if}v(enum target, enum pname, T params);

 sets parameters of the texture environment that specifies how texture
 values are interepreted when texturing a fragment or sets per-texture
 unit texture filtering parameters. The possible target parameters
 are TEXTURE_ENV or TEXTURE_FILTER_CONTROL_EXT. ... When target is
 TEXTURE_ENV, the possible environment parameters are TEXTURE_ENV_MODE
 and TEXTURE_ENV_COLOR. ... When target is TEXTURE_FILTER_CONTROL_EXT,
 the only possible texture filter parameter is TEXTURE_LOD_BIAS_EXT.
 TEXTURE_LOD_BIAS_EXT is set to a signed floating point value that
 is used to bias the level of detail parameter, lambda, as described
 in Section 3.8.5."

 Add a final paragraph at the end of the section:

 "The state required for the per-texture unit filtering parameters
 consists of one floating-point value."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

 None

NVIDIA OpenGL Extension Specifications EXT_texture_lod_bias

 107

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated when TexEnv is called with a <pname> of
 TEXTURE_FILTER_PARAMETER_EXT and the value of <param> or what is pointed
 to by <params> is not TEXTURE_LOD_BIAS_EXT.

New State

(table 6.14, p204) add the entry:

Get Value Type Get Command Initial Value Description Sec Attribute
----------------------- ---- ----------- -------------- --------------- ----- ---------
TEXTURE_LOD_BIAS_EXT R GetTexEnvfv 0.0 Biases texture 3.8.9 texture
 level of detail

(When ARB_multitexture is supported, the TEXTURE_LOD_BIAS_EXT state is per-texture unit.)

New Implementation State

(table 6.24, p214) add the following entries:

Get Value Type Get Command Minimum Value Description Sec Attribute
----------------------- ---- ----------- ------------- ----------------- ----- ---------
MAX_TEXTURE_LOD_BIAS_EXT R+ GetFloatv 4.0 Maximum 3.8.9 -
 absolute texture
 lod bias

EXT_texture_object NVIDIA OpenGL Extension Specifications

 108

Name

 EXT_texture_object

Name Strings

 GL_EXT_texture_object

Version

 $Date: 1995/10/03 05:39:56 $ $Revision: 1.27 $

Number

 20

Dependencies

 EXT_texture3D affects the definition of this extension

Overview

 This extension introduces named texture objects. The only way to name
 a texture in GL 1.0 is by defining it as a single display list. Because
 display lists cannot be edited, these objects are static. Yet it is
 important to be able to change the images and parameters of a texture.

Issues

 * Should the dimensions of a texture object be static once they are
 changed from zero? This might simplify the management of texture
 memory. What about other properties of a texture object?

 No.

Reasoning

 * Previous proposals overloaded the <target> parameter of many Tex
 commands with texture object names, as well as the original
 enumerated values. This proposal eliminated such overloading,
 choosing instead to require an application to bind a texture object,
 and then operate on it through the binding reference. If this
 constraint ultimately proves to be unacceptable, we can always
 extend the extension with additional binding points for editing and
 querying only, but if we expect to do this, we might choose to bite
 the bullet and overload the <target> parameters now.

 * Commands to directly set the priority of a texture object and to
 query the resident status of a texture object are included. I feel
 that binding a texture object would be an unacceptable burden for
 these management operations. These commands also allow queries and
 operations on lists of texture objects, which should improve
 efficiency.

 * GenTexturesEXT does not return a success/failure boolean because
 it should never fail in practice.

NVIDIA OpenGL Extension Specifications EXT_texture_object

 109

New Procedures and Functions

 void GenTexturesEXT(sizei n,
 uint* textures);

 void DeleteTexturesEXT(sizei n,
 const uint* textures);

 void BindTextureEXT(enum target,
 uint texture);

 void PrioritizeTexturesEXT(sizei n,
 const uint* textures,
 const clampf* priorities);

 boolean AreTexturesResidentEXT(sizei n,
 const uint* textures,
 boolean* residences);

 boolean IsTextureEXT(uint texture);

New Tokens

 Accepted by the <pname> parameters of TexParameteri, TexParameterf,
 TexParameteriv, TexParameterfv, GetTexParameteriv, and GetTexParameterfv:

 TEXTURE_PRIORITY_EXT 0x8066

 Accepted by the <pname> parameters of GetTexParameteriv and
 GetTexParameterfv:

 TEXTURE_RESIDENT_EXT 0x8067

 Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 TEXTURE_1D_BINDING_EXT 0x8068
 TEXTURE_2D_BINDING_EXT 0x8069
 TEXTURE_3D_BINDING_EXT 0x806A

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

 Add the following discussion to section 3.8 (Texturing). In addition
 to the default textures TEXTURE_1D, TEXTURE_2D, and TEXTURE_3D_EXT, it
 is possible to create named 1, 2, and 3-dimensional texture objects.
 The name space for texture objects is the unsigned integers, with zero
 reserved by the GL.

 A texture object is created by binding an unused name to TEXTURE_1D,
 TEXTURE_2D, or TEXTURE_3D_EXT. This binding is accomplished by calling
 BindTextureEXT with <target> set to TEXTURE_1D, TEXTURE_2D, or
 TEXTURE_3D_EXT, and <texture> set to the name of the new texture object.
 When a texture object is bound to a target, the previous binding for

EXT_texture_object NVIDIA OpenGL Extension Specifications

 110

 that target is automatically broken.

 When a texture object is first bound it takes the dimensionality of its
 target. Thus, a texture object first bound to TEXTURE_1D is
 1-dimensional; a texture object first bound to TEXTURE_2D is
 2-dimensional, and a texture object first bound to TEXTURE_3D_EXT is
 3-dimensional. The state of a 1-dimensional texture object
 immediately after it is first bound is equivalent to the state of the
 default TEXTURE_1D at GL initialization. Likewise, the state of a
 2-dimensional or 3-dimensional texture object immediately after it is
 first bound is equivalent to the state of the default TEXTURE_2D or
 TEXTURE_3D_EXT at GL initialization. Subsequent bindings of a texture
 object have no effect on its state. The error INVALID_OPERATION is
 generated if an attempt is made to bind a texture object to a target of
 different dimensionality.

 While a texture object is bound, GL operations on the target to which it
 is bound affect the bound texture object, and queries of the target to
 which it is bound return state from the bound texture object. If
 texture mapping of the dimensionality of the target to which a texture
 object is bound is active, the bound texture object is used.

 By default when an OpenGL context is created, TEXTURE_1D, TEXTURE_2D,
 and TEXTURE_3D_EXT have 1, 2, and 3-dimensional textures associated
 with them. In order that access to these default textures not be
 lost, this extension treats them as though their names were all zero.
 Thus the default 1-dimensional texture is operated on, queried, and
 applied as TEXTURE_1D while zero is bound to TEXTURE_1D. Likewise,
 the default 2-dimensional texture is operated on, queried, and applied
 as TEXTURE_2D while zero is bound to TEXTURE_2D, and the default
 3-dimensional texture is operated on, queried, and applied as
 TEXTURE_3D_EXT while zero is bound to TEXTURE_3D_EXT.

 Texture objects are deleted by calling DeleteTexturesEXT with <textures>
 pointing to a list of <n> names of texture object to be deleted. After
 a texture object is deleted, it has no contents or dimensionality, and
 its name is freed. If a texture object that is currently bound is
 deleted, the binding reverts to zero. DeleteTexturesEXT ignores names
 that do not correspond to textures objects, including zero.

 GenTexturesEXT returns <n> texture object names in <textures>. These
 names are chosen in an unspecified manner, the only condition being that
 only names that were not in use immediately prior to the call to
 GenTexturesEXT are considered. Names returned by GenTexturesEXT are
 marked as used (so that they are not returned by subsequent calls to
 GenTexturesEXT), but they are associated with a texture object only
 after they are first bound (just as if the name were unused).

 An implementation may choose to establish a working set of texture
 objects on which binding operations are performed with higher
 performance. A texture object that is currently being treated as a
 part of the working set is said to be resident. AreTexturesResidentEXT
 returns TRUE if all of the <n> texture objects named in <textures> are
 resident, FALSE otherwise. If FALSE is returned, the residence of each
 texture object is returned in <residences>. Otherwise the contents of
 the <residences> array are not changed. If any of the names in
 <textures> is not the name of a texture object, FALSE is returned, the

NVIDIA OpenGL Extension Specifications EXT_texture_object

 111

 error INVALID_VALUE is generated, and the contents of <residences> are
 indeterminate. The resident status of a single bound texture object
 can also be queried by calling GetTexParameteriv or GetTexParameterfv
 with <target> set to the target to which the texture object is bound,
 and <pname> set to TEXTURE_RESIDENT_EXT. This is the only way that the
 resident status of a default texture can be queried.

 Applications guide the OpenGL implementation in determining which
 texture objects should be resident by specifying a priority for each
 texture object. PrioritizeTexturesEXT sets the priorities of the <n>
 texture objects in <textures> to the values in <priorities>. Each
 priority value is clamped to the range [0.0, 1.0] before it is
 assigned. Zero indicates the lowest priority, and hence the least
 likelihood of being resident. One indicates the highest priority, and
 hence the greatest likelihood of being resident. The priority of a
 single bound texture object can also be changed by calling
 TexParameteri, TexParameterf, TexParameteriv, or TexParameterfv with
 <target> set to the target to which the texture object is bound, <pname>
 set to TEXTURE_PRIORITY_EXT, and <param> or <params> specifying the new
 priority value (which is clamped to [0.0,1.0] before being assigned).
 This is the only way that the priority of a default texture can be
 specified. (PrioritizeTexturesEXT silently ignores attempts to
 prioritize nontextures, and texture zero.)

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

 BindTextureEXT and PrioritizeTexturesEXT are included in display lists.
 All other commands defined by this extension are not included in display
 lists.

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

 IsTextureEXT returns TRUE if <texture> is the name of a valid texture
 object. If <texture> is zero, or is a non-zero value that is not the
 name of a texture object, or if an error condition occurs, IsTextureEXT
 returns FALSE.

 Because the query values of TEXTURE_1D, TEXTURE_2D, and TEXTURE_3D_EXT
 are already defined as booleans indicating whether these textures are
 enabled or disabled, another mechanism is required to query the
 binding associated with each of these texture targets. The name
 of the texture object currently bound to TEXTURE_1D is returned in
 <params> when GetIntegerv is called with <pname> set to
 TEXTURE_1D_BINDING_EXT. If no texture object is currently bound to
 TEXTURE_1D, zero is returned. Likewise, the name of the texture object
 bound to TEXTURE_2D or TEXTURE_3D_EXT is returned in <params> when
 GetIntegerv is called with <pname> set to TEXTURE_2D_BINDING_EXT or
 TEXTURE_3D_BINDING_EXT. If no texture object is currently bound to
 TEXTURE_2D or to TEXTURE_3D_EXT, zero is returned.

 A texture object comprises the image arrays, priority, border color,
 filter modes, and wrap modes that are associated with that object. More

EXT_texture_object NVIDIA OpenGL Extension Specifications

 112

 explicitly, the state list

 TEXTURE,
 TEXTURE_PRIORITY_EXT
 TEXTURE_RED_SIZE,
 TEXTURE_GREEN_SIZE,
 TEXTURE_BLUE_SIZE,
 TEXTURE_ALPHA_SIZE,
 TEXTURE_LUMINANCE_SIZE,
 TEXTURE_INTENSITY_SIZE,
 TEXTURE_WIDTH,
 TEXTURE_HEIGHT,
 TEXTURE_DEPTH_EXT,
 TEXTURE_BORDER,
 TEXTURE_COMPONENTS,
 TEXTURE_BORDER_COLOR,
 TEXTURE_MIN_FILTER,
 TEXTURE_MAG_FILTER,
 TEXTURE_WRAP_S,
 TEXTURE_WRAP_T,
 TEXTURE_WRAP_R_EXT

 composes a single texture object.

 When PushAttrib is called with TEXTURE_BIT enabled, the priorities,
 border colors, filter modes, and wrap modes of the currently bound
 texture objects are pushed, as well as the current texture bindings and
 enables. When an attribute set that includes texture information is
 popped, the bindings and enables are first restored to their pushed
 values, then the bound texture objects have their priorities, border
 colors, filter modes, and wrap modes restored to their pushed values.

Additions to the GLX Specification

 Texture objects are shared between GLX rendering contexts if and only
 if the rendering contexts share display lists. No change is made to
 the GLX API.

GLX Protocol

 Six new GL commands are added.

 The following rendering command is sent to the server as part of a
 glXRender request:

 BindTextureEXT
 2 12 rendering command length
 2 4117 rendering command opcode
 4 ENUM target
 4 CARD32 texture

 The following rendering command can be sent to the server as part of a
 glXRender request or as part of a glXRenderLarge request:

NVIDIA OpenGL Extension Specifications EXT_texture_object

 113

 PrioritizeTexturesEXT
 2 8+(n*8) rendering command length
 2 4118 rendering command opcode
 4 INT32 n
 n*4 LISTofCARD32 textures
 n*4 LISTofFLOAT32 priorities

 If the command is encoded in a glXRenderLarge request, the
 command opcode and command length fields above are expanded to
 4 bytes each:

 4 12+(n*8) rendering command length
 4 4118 rendering command opcode

 The remaining commands are non-rendering commands. These commands are
 sent separately (i.e., not as part of a glXRender or glXRenderLarge
 request), using either the glXVendorPrivate request or the
 glXVendorPrivateWithReply request:

 DeleteTexturesEXT
 1 CARD8 opcode (X assigned)
 1 16 GLX opcode (glXVendorPrivate)
 2 4+n request length
 4 12 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 CARD32 textures

 GenTexturesEXT
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request length
 4 13 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 n reply length
 24 unused
 4*n LISTofCARD32 textures

EXT_texture_object NVIDIA OpenGL Extension Specifications

 114

 AreTexturesResidentEXT
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request length
 4 11 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 4*n LISTofCARD32 textures
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 (n+p)/4 reply length
 4 BOOL32 return_value
 20 unused
 n LISTofBOOL residences
 p unused, p=pad(n)

 IsTextureEXT
 1 CARD8 opcode (X assigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request length
 4 14 vendor specific opcode
 4 GLX_CONTEXT_TAG context tag
 4 CARD32 textures
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence number
 4 0 reply length
 4 BOOL32 return_value
 20 unused

Dependencies on EXT_texture3D

 If EXT_texture3D is not supported, then all references to 3D textures
 in this specification are invalid.

Errors

 INVALID_VALUE is generated if GenTexturesEXT parameter <n> is negative.

 INVALID_VALUE is generated if DeleteTexturesEXT parameter <n> is
 negative.

 INVALID_ENUM is generated if BindTextureEXT parameter <target> is not
 TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D_EXT.

 INVALID_OPERATION is generated if BindTextureEXT parameter <target> is
 TEXTURE_1D, and parameter <texture> is the name of a 2-dimensional or
 3-dimensional texture object.

 INVALID_OPERATION is generated if BindTextureEXT parameter <target> is
 TEXTURE_2D, and parameter <texture> is the name of a 1-dimensional or
 3-dimensional texture object.

 INVALID_OPERATION is generated if BindTextureEXT parameter <target> is

NVIDIA OpenGL Extension Specifications EXT_texture_object

 115

 TEXTURE_3D_EXT, and parameter <texture> is the name of a 1-dimensional
 or 2-dimensional texture object.

 INVALID_VALUE is generated if PrioritizeTexturesEXT parameter <n>
 negative.

 INVALID_VALUE is generated if AreTexturesResidentEXT parameter <n>
 is negative.

 INVALID_VALUE is generated by AreTexturesResidentEXT if any of the
 names in <textures> is zero, or is not the name of a texture.

 INVALID_OPERATION is generated if any of the commands defined in this
 extension is executed between the execution of Begin and the
 corresponding execution of End.

New State

Get Value Get Command Type Initial Value Attribute
--------- ----------- ---- ------------- ---------
TEXTURE_1D IsEnabled B FALSE texture/enable
TEXTURE_2D IsEnabled B FALSE texture/enable
TEXTURE_3D_EXT IsEnabled B FALSE texture/enable
TEXTURE_1D_BINDING_EXT GetIntegerv Z+ 0 texture
TEXTURE_2D_BINDING_EXT GetIntegerv Z+ 0 texture
TEXTURE_3D_BINDING_EXT GetIntegerv Z+ 0 texture
TEXTURE_PRIORITY_EXT GetTexParameterfv n x Z+ 1 texture
TEXTURE_RESIDENT_EXT AreTexturesResidentEXT n x B unknown -

TEXTURE GetTexImage n x levels x I null -
TEXTURE_RED_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_GREEN_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_BLUE_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_ALPHA_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_LUMINANCE_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_INTENSITY_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_WIDTH GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_HEIGHT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_DEPTH_EXT GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_4DSIZE_SGIS GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_BORDER GetTexLevelParameteriv n x levels x Z+ 0 -
TEXTURE_COMPONENTS (1D and 2D) GetTexLevelParameteriv n x levels x Z42 1 -
TEXTURE_COMPONENTS (3D and 4D) GetTexLevelParameteriv n x levels x Z38 LUMINANCE -
TEXTURE_BORDER_COLOR GetTexParameteriv n x C 0, 0, 0, 0 texture
TEXTURE_MIN_FILTER GetTexParameteriv n x Z7 NEAREST_MIPMAP_LINEAR texture
TEXTURE_MAG_FILTER GetTexParameteriv n x Z3 LINEAR texture
TEXTURE_WRAP_S GetTexParameteriv n x Z2 REPEAT texture
TEXTURE_WRAP_T GetTexParameteriv n x Z2 REPEAT texture
TEXTURE_WRAP_R_EXT GetTexParameteriv n x Z2 REPEAT texture
TEXTURE_WRAP_Q_SGIS GetTexParameteriv n x Z2 REPEAT texture

New Implementation Dependent State

 None

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 116

Name

 EXT_vertex_array

Name Strings

 GL_EXT_vertex_array

Version

 $Date: 1995/10/03 05:39:58 $ $Revision: 1.16 $ FINAL

Number

 30

Dependencies

 None

Overview

 This extension adds the ability to specify multiple geometric primitives
 with very few subroutine calls. Instead of calling an OpenGL procedure
 to pass each individual vertex, normal, or color, separate arrays
 of vertexes, normals, and colors are prespecified, and are used to
 define a sequence of primitives (all of the same type) when a single
 call is made to DrawArraysEXT. A stride mechanism is provided so that
 an application can choose to keep all vertex data staggered in a
 single array, or sparsely in separate arrays. Single-array storage
 may optimize performance on some implementations.

 This extension also supports the rendering of individual array elements,
 each specified as an index into the enabled arrays.

Issues

 * Should arrays for material parameters be provided? If so, how?

 A: No. Let's leave this to a separate extension, and keep this
 extension lean.

 * Should a FORTRAN interface be specified in this document?

 * It may not be possible to implement GetPointervEXT in FORTRAN. If
 not, should we eliminate it from this proposal?

 A: Leave it in.

 * Should a stride be specified by DrawArraysEXT which, if non-zero,
 would override the strides specified for the individual arrays?
 This might improve the efficiency of single-array transfers.

 A: No, it's not worth the effort and complexity.

 * Should entry points for byte vertexes, byte indexes, and byte
 texture coordinates be added in this extension?

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 117

 A: No, do this in a separate extension, which defines byte support
 for arrays and for the current procedural interface.

 * Should support for meshes (not strips) of rectangles be provided?

 A: No. If this is necessary, define a separate quad_mesh extension
 that supports both immediate mode and arrays. (Add QUAD_MESH_EXT
 as an token accepted by Begin and DrawArraysEXT. Add
 QuadMeshLengthEXT to specify the length of the mesh.)

Reasoning

 * DrawArraysEXT requires that VERTEX_ARRAY_EXT be enabled so that
 future extensions can support evaluation as well as direct
 specification of vertex coordinates.

 * This extension does not support evaluation. It could be extended
 to provide such support by adding arrays of points to be evaluated,
 and by adding enables to indicate that the arrays are to be
 evaluated. I think we may choose to add an array version of
 EvalMesh, rather than extending the operation of DrawArraysEXT,
 so I'd rather wait on this one.

 * <size> is specified before <type> to match the order of the
 information in immediate mode commands, such as Vertex3f.
 (first 3, then f)

 * It seems reasonable to allow attribute values to be undefined after
 DrawArraysEXT executes. This avoids implementation overhead in
 the case where an incomplete primitive is specified, and will allow
 optimization on multiprocessor systems. I don't expect this to be
 a burden to programmers.

 * It is not an error to call VertexPointerEXT, NormalPointerEXT,
 ColorPointerEXT, IndexPointerEXT, TexCoordPointerEXT,
 or EdgeFlagPointerEXT between the execution of Begin and the
 corresponding execution of End. Because these commands will
 typically be implemented on the client side with no protocol,
 testing for between-Begin-End status requires that the client
 track this state, or that a round trip be made. Neither is
 desirable.

 * Arrays are enabled and disabled individually, rather than with a
 single mask parameter, for two reasons. First, we have had trouble
 allocating bits in masks, so eliminating a mask eliminates potential
 trouble down the road. We may eventually require a larger number of
 array types than there are bits in a mask. Second, making the
 enables into state eliminates a parameter in ArrayElementEXT, and
 may allow it to execute more efficiently. Of course this state
 model may result in programming errors, but OpenGL is full of such
 hazards anyway!

 * ArrayElementEXT is provided to support applications that construct
 primitives by indexing vertex data, rather than by streaming through
 arrays of data in first-to-last order. Because each call specifies
 only a single vertex, it is possible for an application to explicitly

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 118

 specify per-primitive attributes, such as a single normal per
 individual triangle.

 * The <count> parameters are added to the *PointerEXT commands to
 allow implementations to cache array data, and in particular to
 cache the transformed results of array data that are rendered
 repeatedly by ArrayElementEXT. Implementations that do not wish
 to perform such caching can ignore the <count> parameter.

 * The <first> parameter of DrawArraysEXT allows a single set of
 arrays to be used repeatedly, possibly improving performance.

New Procedures and Functions

 void ArrayElementEXT(int i);

 void DrawArraysEXT(enum mode,
 int first,
 sizei count);

 void VertexPointerEXT(int size,
 enum type,
 sizei stride,
 sizei count,
 const void* pointer);

 void NormalPointerEXT(enum type,
 sizei stride,
 sizei count,
 const void* pointer);

 void ColorPointerEXT(int size,
 enum type,
 sizei stride,
 sizei count,
 const void* pointer);

 void IndexPointerEXT(enum type,
 sizei stride,
 sizei count,
 const void* pointer);

 void TexCoordPointerEXT(int size,
 enum type,
 sizei stride,
 sizei count,
 const void* pointer);

 void EdgeFlagPointerEXT(sizei stride,
 sizei count,
 const Boolean* pointer);

 void GetPointervEXT(enum pname,
 void** params);

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 119

New Tokens

 Accepted by the <cap> parameter of Enable, Disable, and IsEnabled, and
 by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and
 GetDoublev:

 VERTEX_ARRAY_EXT 0x8074
 NORMAL_ARRAY_EXT 0x8075
 COLOR_ARRAY_EXT 0x8076
 INDEX_ARRAY_EXT 0x8077
 TEXTURE_COORD_ARRAY_EXT 0x8078
 EDGE_FLAG_ARRAY_EXT 0x8079

 Accepted by the <type> parameter of VertexPointerEXT, NormalPointerEXT,
 ColorPointerEXT, IndexPointerEXT, and TexCoordPointerEXT:

 DOUBLE_EXT 0x140A

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 VERTEX_ARRAY_SIZE_EXT 0x807A
 VERTEX_ARRAY_TYPE_EXT 0x807B
 VERTEX_ARRAY_STRIDE_EXT 0x807C
 VERTEX_ARRAY_COUNT_EXT 0x807D
 NORMAL_ARRAY_TYPE_EXT 0x807E
 NORMAL_ARRAY_STRIDE_EXT 0x807F
 NORMAL_ARRAY_COUNT_EXT 0x8080
 COLOR_ARRAY_SIZE_EXT 0x8081
 COLOR_ARRAY_TYPE_EXT 0x8082
 COLOR_ARRAY_STRIDE_EXT 0x8083
 COLOR_ARRAY_COUNT_EXT 0x8084
 INDEX_ARRAY_TYPE_EXT 0x8085
 INDEX_ARRAY_STRIDE_EXT 0x8086
 INDEX_ARRAY_COUNT_EXT 0x8087
 TEXTURE_COORD_ARRAY_SIZE_EXT 0x8088
 TEXTURE_COORD_ARRAY_TYPE_EXT 0x8089
 TEXTURE_COORD_ARRAY_STRIDE_EXT 0x808A
 TEXTURE_COORD_ARRAY_COUNT_EXT 0x808B
 EDGE_FLAG_ARRAY_STRIDE_EXT 0x808C
 EDGE_FLAG_ARRAY_COUNT_EXT 0x808D

 Accepted by the <pname> parameter of GetPointervEXT:

 VERTEX_ARRAY_POINTER_EXT 0x808E
 NORMAL_ARRAY_POINTER_EXT 0x808F
 COLOR_ARRAY_POINTER_EXT 0x8090
 INDEX_ARRAY_POINTER_EXT 0x8091
 TEXTURE_COORD_ARRAY_POINTER_EXT 0x8092
 EDGE_FLAG_ARRAY_POINTER_EXT 0x8093

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

 Array Specification

 Individual array pointers and associated data are maintained for an

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 120

 array of vertexes, an array of normals, an array of colors, an array
 of color indexes, an array of texture coordinates, and an array of edge
 flags. The data associated with each array specify the data type of
 the values in the array, the number of values per element in the array
 (e.g. vertexes of 2, 3, or 4 coordinates), the byte stride from one
 array element to the next, and the number of elements (counting from
 the first) that are static. Static elements may be modified by the
 application, but once they are modified, the application must explicitly
 respecify the array before using it for any rendering. When an array is
 specified, the pointer and associated data are saved as client-side
 state, and static elements may be cached by the implementation. Non-
 static (dynamic) elements are never accessed until ArrayElementEXT or
 DrawArraysEXT is issued.

 VertexPointerEXT specifies the location and data format of an array
 of vertex coordinates. <pointer> specifies a pointer to the first
 coordinate of the first vertex in the array. <type> specifies the data
 type of each coordinate in the array, and must be one of SHORT, INT,
 FLOAT, or DOUBLE_EXT, implying GL data types short, int, float, and
 double respectively. <size> specifies the number of coordinates per
 vertex, and must be 2, 3, or 4. <stride> specifies the byte offset
 between pointers to consecutive vertexes. If <stride> is zero, the
 vertex data are understood to be tightly packed in the array. <count>
 specifies the number of vertexes, counting from the first, that are
 static.

 NormalPointerEXT specifies the location and data format of an array
 of normals. <pointer> specifies a pointer to the first coordinate
 of the first normal in the array. <type> specifies the data type
 of each coordinate in the array, and must be one of BYTE, SHORT, INT,
 FLOAT, or DOUBLE_EXT, implying GL data types byte, short, int, float,
 and double respectively. It is understood that each normal comprises
 three coordinates. <stride> specifies the byte offset between
 pointers to consecutive normals. If <stride> is zero, the normal
 data are understood to be tightly packed in the array. <count>
 specifies the number of normals, counting from the first, that are
 static.

 ColorPointerEXT specifies the location and data format of an array
 of color components. <pointer> specifies a pointer to the first
 component of the first color element in the array. <type> specifies the
 data type of each component in the array, and must be one of BYTE,
 UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, FLOAT, or
 DOUBLE_EXT, implying GL data types byte, ubyte, short, ushort, int,
 uint, float, and double respectively. <size> specifies the number of
 components per color, and must be 3 or 4. <stride> specifies the byte
 offset between pointers to consecutive colors. If <stride> is zero,
 the color data are understood to be tightly packed in the array.
 <count> specifies the number of colors, counting from the first, that
 are static.

 IndexPointerEXT specifies the location and data format of an array
 of color indexes. <pointer> specifies a pointer to the first index in
 the array. <type> specifies the data type of each index in the
 array, and must be one of SHORT, INT, FLOAT, or DOUBLE_EXT, implying
 GL data types short, int, float, and double respectively. <stride>
 specifies the byte offset between pointers to consecutive indexes. If

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 121

 <stride> is zero, the index data are understood to be tightly packed
 in the array. <count> specifies the number of indexes, counting from
 the first, that are static.

 TexCoordPointerEXT specifies the location and data format of an array
 of texture coordinates. <pointer> specifies a pointer to the first
 coordinate of the first element in the array. <type> specifies the data
 type of each coordinate in the array, and must be one of SHORT, INT,
 FLOAT, or DOUBLE_EXT, implying GL data types short, int, float, and
 double respectively. <size> specifies the number of coordinates per
 element, and must be 1, 2, 3, or 4. <stride> specifies the byte offset
 between pointers to consecutive elements of coordinates. If <stride> is
 zero, the coordinate data are understood to be tightly packed in the
 array. <count> specifies the number of texture coordinate elements,
 counting from the first, that are static.

 EdgeFlagPointerEXT specifies the location and data format of an array
 of boolean edge flags. <pointer> specifies a pointer to the first flag
 in the array. <stride> specifies the byte offset between pointers to
 consecutive edge flags. If <stride> is zero, the edge flag data are
 understood to be tightly packed in the array. <count> specifies the
 number of edge flags, counting from the first, that are static.

 The table below summarizes the sizes and data types accepted (or
 understood implicitly) by each of the six pointer-specification commands.

 Command Sizes Types
 ------- ----- -----
 VertexPointerEXT 2,3,4 short, int, float, double
 NormalPointerEXT 3 byte, short, int, float, double
 ColorPointerEXT 3,4 byte, short, int, float, double,
 ubyte, ushort, uint
 IndexPointerEXT 1 short, int, float, double
 TexCoordPointerEXT 1,2,3,4 short, int, float, double
 EdgeFlagPointerEXT 1 boolean

 Rendering the Arrays

 By default all the arrays are disabled, meaning that they will not
 be accessed when either ArrayElementEXT or DrawArraysEXT is called.
 An individual array is enabled or disabled by calling Enable or
 Disable with <cap> set to appropriate value, as specified in the
 table below:

 Array Specification Command Enable Token
 --------------------------- ------------
 VertexPointerEXT VERTEX_ARRAY_EXT
 NormalPointerEXT NORMAL_ARRAY_EXT
 ColorPointerEXT COLOR_ARRAY_EXT
 IndexPointerEXT INDEX_ARRAY_EXT
 TexCoordPointerEXT TEXTURE_COORD_ARRAY_EXT
 EdgeFlagPointerEXT EDGE_FLAG_ARRAY_EXT

 When ArrayElementEXT is called, a single vertex is drawn, using vertex
 and attribute data taken from location <i> of the enabled arrays. The
 semantics of ArrayElementEXT are defined in the C-code below:

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 122

 void ArrayElementEXT (int i) {
 byte* p;
 if (NORMAL_ARRAY_EXT) {
 if (normal_stride == 0)
 p = (byte*)normal_pointer + i * 3 * sizeof(normal_type);
 else
 p = (byte*)normal_pointer + i * normal_stride;
 Normal3<normal_type>v ((normal_type*)p);
 }
 if (COLOR_ARRAY_EXT) {
 if (color_stride == 0)
 p = (byte*)color_pointer +
 i * color_size * sizeof(color_type);
 else
 p = (byte*)color_pointer + i * color_stride;
 Color<color_size><color_type>v ((color_type*)p);
 }
 if (INDEX_ARRAY_EXT) {
 if (index_stride == 0)
 p = (byte*)index_pointer + i * sizeof(index_type);
 else
 p = (byte*)index_pointer + i * index_stride;
 Index<index_type>v ((index_type*)p);
 }
 if (TEXTURE_COORD_ARRAY_EXT) {
 if (texcoord_stride == 0)
 p = (byte*)texcoord_pointer +
 i * texcoord_size * sizeof(texcoord_type);
 else
 p = (byte*)texcoord_pointer + i * texcoord_stride;
 TexCoord<texcoord_size><texcoord_type>v ((texcoord_type*)p);
 }
 if (EDGE_FLAG_ARRAY_EXT) {
 if (edgeflag_stride == 0)
 p = (byte*)edgeflag_pointer + i * sizeof(boolean);
 else
 p = (byte*)edgeflag_pointer + i * edgeflag_stride;
 EdgeFlagv ((boolean*)p);
 }
 if (VERTEX_ARRAY_EXT) {
 if (vertex_stride == 0)
 p = (byte*)vertex_pointer +
 i * vertex_size * sizeof(vertex_type);
 else
 p = (byte*)vertex_pointer + i * vertex_stride;
 Vertex<vertex_size><vertex_type>v ((vertex_type*)p);
 }
 }

 ArrayElementEXT executes even if VERTEX_ARRAY_EXT is not enabled. No
 drawing occurs in this case, but the attributes corresponding to
 enabled arrays are modified.

 When DrawArraysEXT is called, <count> sequential elements from each
 enabled array are used to construct a sequence of geometric primitives,
 beginning with element <first>. <mode> specifies what kind of

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 123

 primitives are constructed, and how the array elements are used to
 construct these primitives. Accepted values for <mode> are POINTS,
 LINE_STRIP, LINE_LOOP, LINES, TRIANGLE_STRIP, TRIANGLE_FAN, TRIANGLES,
 QUAD_STRIP, QUADS, and POLYGON. If VERTEX_ARRAY_EXT is not enabled, no
 geometric primitives are generated.

 The semantics of DrawArraysEXT are defined in the C-code below:

 void DrawArraysEXT(enum mode, int first, sizei count) {
 int i;
 if (count < 0)
 /* generate INVALID_VALUE error and abort */
 else {
 Begin (mode);
 for (i=0; i < count; i++)
 ArrayElementEXT(first + i);
 End ();
 }
 }

 The ways in which the execution of DrawArraysEXT differs from the
 semantics indicated in the pseudo-code above are:

 1. Vertex attributes that are modified by DrawArraysEXT have an
 unspecified value after DrawArraysEXT returns. For example, if
 COLOR_ARRAY_EXT is enabled, the value of the current color is
 undefined after DrawArraysEXT executes. Attributes that aren't
 modified remain well defined.

 2. Operation of DrawArraysEXT is atomic with respect to error
 generation. If an error is generated, no other operations take
 place.

 Although it is not an error to respecify an array between the execution
 of Begin and the corresponding execution of End, the result of such
 respecification is undefined. Static array data may be read and cached
 by the implementation at any time. If static array data are modified by
 the application, the results of any subsequently issued ArrayElementEXT
 or DrawArraysEXT commands are undefined.

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

 None

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame buffer)

 None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

 ArrayElementEXT and DrawArraysEXT are included in display lists.
 When either command is entered into a display list, the necessary
 array data (determined by the array pointers and enables) is also
 entered into the display list. Because the array pointers and
 enables are client side state, their values affect display lists
 when the lists are created, not when the lists are executed.

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 124

 Array specification commands VertexPointerEXT, NormalPointerEXT,
 ColorPointerEXT, IndexPointerEXT, TexCoordPointerEXT, and
 EdgeFlagPointerEXT specify client side state, and are therefore
 not included in display lists. Likewise Enable and Disable, when
 called with <cap> set to VERTEX_ARRAY_EXT, NORMAL_ARRAY_EXT,
 COLOR_ARRAY_EXT, INDEX_ARRAY_EXT, TEXTURE_COORD_ARRAY_EXT, or
 EDGE_FLAG_ARRAY_EXT, are not included in display lists.
 GetPointervEXT returns state information, and so is not included
 in display lists.

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

 GetPointervEXT returns in <param> the array pointer value specified
 by <pname>. Accepted values for <pname> are VERTEX_ARRAY_POINTER_EXT,
 NORMAL_ARRAY_POINTER_EXT, COLOR_ARRAY_POINTER_EXT,
 INDEX_ARRAY_POINTER_EXT, TEXTURE_COORD_ARRAY_POINTER_EXT,
 and EDGE_FLAG_ARRAY_POINTER_EXT.

 All array data are client side state, and are not saved or restored
 by PushAttrib and PopAttrib.

Additions to the GLX Specification

 None

GLX Protocol

 A new rendering command is added; it can be sent to the server as part of a
 glXRender request or as part of a glXRenderLarge request:

 The DrawArraysEXT command consists of three sections, in the following order:
 (1) header information, (2) a list of array information, containing the type
 and size of the array values for each enabled array and (3) a list of vertex
 data. Each element in the list of vertex data contains information for a single
 vertex taken from the enabled arrays.

 DrawArraysEXT
 2 16+(12*m)+(s*n) rendering command length
 2 4116 rendering command opcode
 4 CARD32 n (number of array elements)
 4 CARD32 m (number of enabled arrays)
 4 ENUM mode /* GL_POINTS etc */
 12*m LISTofARRAY_INFO
 s*n LISTofVERTEX_DATA

 Where s = ns + cs + is + ts + es + vs + np + cp + ip + tp + ep + vp. (See
 description below, under VERTEX_DATA.) Note that if an array is disabled
 then no information is sent for it. For example, when the normal array is
 disabled, there is no ARRAY_INFO record for the normal array and ns and np
 are both zero.

 Note that the list of ARRAY_INFO is unordered: since the ARRAY_INFO
 record contains the array type, the arrays in the list may be stored
 in any order. Also, the VERTEX_DATA list is a packed list of vertices.
 For each vertex, data is retrieved from the enabled arrays, and stored
 in the list.

 If the command is encoded in a glXRenderLarge request, the command
 opcode and command length fields above are expanded to 4 bytes each:

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 125

 4 20+(12*m)+(s*n) rendering command length
 4 4116 rendering command opcode

 ARRAY_INFO
 4 ENUM data type
 0x1400 i=1 BYTE
 0x1401 i=1 UNSIGNED_BYTE
 0x1402 i=2 SHORT
 0x1403 i=2 UNSIGNED_SHORT
 0x1404 i=4 INT
 0x1405 i=4 UNSIGNED_INT
 0x1406 i=4 FLOAT
 0x140A i=8 DOUBLE_EXT
 4 INT32 j (number of values in array element)
 4 ENUM array type
 0x8074 j=2/3/4 VERTEX_ARRAY_EXT
 0x8075 j=3 NORMAL_ARRAY_EXT
 0x8076 j=3/4 COLOR_ARRAY_EXT
 0x8077 j=1 INDEX_ARRAY_EXT
 0x8078 j=1/2/3/4 TEXTURE_COORD_ARRAY_EXT
 0x8079 j=1 EDGE_FLAG_ARRAY_EXT

 For each array, the size of an array element is i*j. Some arrays
 (e.g., the texture coordinate array) support different data sizes;
 for these arrays, the size, j, is specified when the array is defined.

 VERTEX_DATA
 if the normal array is enabled:

 ns LISTofBYTE normal array element
 np unused, np=pad(ns)

 if the color array is enabled:

 cs LISTofBYTE color array element
 cp unused, cp=pad(cs)

 if the index array is enabled:

 is LISTofBYTE index array element
 ip unused, ip=pad(is)

 if the texture coord array is enabled:

 ts LISTofBYTE texture coord array element
 tp unused, tp=pad(ts)

 if the edge flag array is enabled:

 es LISTofBYTE edge flag array element
 ep unused, ep=pad(es)

 if the vertex array is enabled:

 vs LISTofBYTE vertex array element
 vp unused, vp=pad(vs)

 where ns, cs, is, ts, es, vs is the size of the normal, color, index,
 texture, edge and vertex array elements and np, cp, ip, tp, ep, vp is
 the padding for the normal, color, index, texture, edge and vertex array
 elements, respectively.

EXT_vertex_array NVIDIA OpenGL Extension Specifications

 126

Errors

 INVALID_OPERATION is generated if DrawArraysEXT is called between the
 execution of Begin and the corresponding execution of End.

 INVALID_ENUM is generated if DrawArraysEXT parameter <mode> is not
 POINTS, LINE_STRIP, LINE_LOOP, LINES, TRIANGLE_STRIP, TRIANGLE_FAN,
 TRIANGLES, QUAD_STRIP, QUADS, or POLYGON.

 INVALID_VALUE is generated if DrawArraysEXT parameter <count> is
 negative.

 INVALID_VALUE is generated if VertexPointerEXT parameter <size> is not
 2, 3, or 4.

 INVALID_ENUM is generated if VertexPointerEXT parameter <type> is not
 SHORT, INT, FLOAT, or DOUBLE_EXT.

 INVALID_VALUE is generated if VertexPointerEXT parameter <stride> or
 <count> is negative.

 INVALID_ENUM is generated if NormalPointerEXT parameter <type> is not
 BYTE, SHORT, INT, FLOAT, or DOUBLE_EXT.

 INVALID_VALUE is generated if NormalPointerEXT parameter <stride> or
 <count> is negative.

 INVALID_VALUE is generated if ColorPointerEXT parameter <size> is not
 3 or 4.

 INVALID_ENUM is generated if ColorPointerEXT parameter <type> is not
 BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, FLOAT,
 or DOUBLE_EXT.

 INVALID_VALUE is generated if ColorPointerEXT parameter <stride> or
 <count> is negative.

 INVALID_ENUM is generated if IndexPointerEXT parameter <type> is not
 SHORT, INT, FLOAT, or DOUBLE_EXT.

 INVALID_VALUE is generated if IndexPointerEXT parameter <stride> or
 <count> is negative.

 INVALID_VALUE is generated if TexCoordPointerEXT parameter <size> is not
 1, 2, 3, or 4.

 INVALID_ENUM is generated if TexCoordPointerEXT parameter <type> is not
 SHORT, INT, FLOAT, or DOUBLE_EXT.

 INVALID_VALUE is generated if TexCoordPointerEXT parameter <stride> or
 <count> is negative.

 INVALID_VALUE is generated if EdgeFlagPointerEXT parameter <stride> or
 <count> is negative.

 INVALID_ENUM is generated if GetPointervEXT parameter <pname> is not
 VERTEX_ARRAY_POINTER_EXT, NORMAL_ARRAY_POINTER_EXT,

NVIDIA OpenGL Extension Specifications EXT_vertex_array

 127

 COLOR_ARRAY_POINTER_EXT, INDEX_ARRAY_POINTER_EXT,
 TEXTURE_COORD_ARRAY_POINTER_EXT, or EDGE_FLAG_ARRAY_POINTER_EXT.

New State
 Initial
 Get Value Get Command Type Value Attrib
 --------- ----------- ---- ------- ------
 VERTEX_ARRAY_EXT IsEnabled B False client
 VERTEX_ARRAY_SIZE_EXT GetIntegerv Z+ 4 client
 VERTEX_ARRAY_TYPE_EXT GetIntegerv Z4 FLOAT client
 VERTEX_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 VERTEX_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 VERTEX_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client
 NORMAL_ARRAY_EXT IsEnabled B False client
 NORMAL_ARRAY_TYPE_EXT GetIntegerv Z5 FLOAT client
 NORMAL_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 NORMAL_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 NORMAL_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client
 COLOR_ARRAY_EXT IsEnabled B False client
 COLOR_ARRAY_SIZE_EXT GetIntegerv Z+ 4 client
 COLOR_ARRAY_TYPE_EXT GetIntegerv Z8 FLOAT client
 COLOR_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 COLOR_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 COLOR_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client
 INDEX_ARRAY_EXT IsEnabled B False client
 INDEX_ARRAY_TYPE_EXT GetIntegerv Z4 FLOAT client
 INDEX_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 INDEX_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 INDEX_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client
 TEXTURE_COORD_ARRAY_EXT IsEnabled B False client
 TEXTURE_COORD_ARRAY_SIZE_EXT GetIntegerv Z+ 4 client
 TEXTURE_COORD_ARRAY_TYPE_EXT GetIntegerv Z4 FLOAT client
 TEXTURE_COORD_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 TEXTURE_COORD_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 TEXTURE_COORD_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client
 EDGE_FLAG_ARRAY_EXT IsEnabled B False client
 EDGE_FLAG_ARRAY_STRIDE_EXT GetIntegerv Z+ 0 client
 EDGE_FLAG_ARRAY_COUNT_EXT GetIntegerv Z+ 0 client
 EDGE_FLAG_ARRAY_POINTER_EXT GetPointervEXT Z+ 0 client

New Implementation Dependent State

 None

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 128

Name

 EXT_vertex_weighting

Name Strings

 GL_EXT_vertex_weighting

Notice

 Copyright NVIDIA Corporation, 1999.

Version

 August 19, 1999

Dependencies

 None

 Written based on the wording of the OpenGL 1.2 specification but not
 dependent on it.

Overview

 The intent of this extension is to provide a means for blending
 geometry based on two slightly differing modelview matrices.
 The blending is based on a vertex weighting that can change on a
 per-vertex basis. This provides a primitive form of skinning.

 A second modelview matrix transform is introduced. When vertex
 weighting is enabled, the incoming vertex object coordinates are
 transformed by both the primary and secondary modelview matrices;
 likewise, the incoming normal coordinates are transformed by the
 inverses of both the primary and secondary modelview matrices.
 The resulting two position coordinates and two normal coordinates
 are blended based on the per-vertex vertex weight and then combined
 by addition. The transformed, weighted, and combined vertex position
 and normal are then used by OpenGL as the eye-space position and
 normal for lighting, texture coordinate, generation, clipping,
 and further vertex transformation.

Issues

 Should the extension be written to extend to more than two vertex
 weights and modelview matrices?

 RESOLUTION: NO. Supports only one vertex weight and two modelview
 matrices. If more than two is useful, that can be handled with
 another extension.

 Should the weighting factor be GLclampf instead of GLfloat?

 RESOLUTION: GLfloat. Though the value of a weighting factors
 outside the range of zero to one (and even weights that do not add
 to one) is dubious, there is no reason to limit the implementation

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 129

 to values between zero and one.

 Should the weights and modelview matrices be labeled 1 & 2 or 0 & 1?

 RESOLUTION: 0 & 1. This is consistent with the way lights and
 texture units are named in OpenGL. Make GL_MODELVIEW0_EXT
 be an alias for GL_MODELVIEW. Note that the GL_MODELVIEW0_EXT+1
 will not be GL_MODELVIEW1_EXT as is the case with GL_LIGHT0 and
 GL_LIGHT1.

 Should there be a way to simultaneously Rotate, Translate, Scale,
 LoadMatrix, MultMatrix, etc. the two modelview matrices together?

 RESOLUTION: NO. The application must use MatrixMode and repeated
 calls to keep the matrices in sync if desired.

 Should the secondary modelview matrix stack be as deep as the primary
 matrix stack or can they be different sizes?

 RESOLUTION: Must be the SAME size. This wastes a lot of memory
 that will be probably never be used (the modelview matrix stack
 must have at least 32 entries), but memory is cheap.

 The value returned by MAX_MODELVIEW_STACK_DEPTH applies to both
 modelview matrices.

 Should there be any vertex array support for vertex weights.

 RESOLUTION: YES.

 Should we have a VertexWeight2fEXT that takes has two weight values?

 RESOLUTION: NO. The weights are always vw and 1-vw.

 What is the "correct" way to blend matrices, particularly when wo is
 not one or the modelview matrix is projective?

 RESOLUTION: While it may not be 100% correct, the extension blends
 the vertices based on transforming the object coordinates by
 both M0 and M1, but the resulting w coordinate comes from simply
 transforming the object coordinates by M0 and extracting the w.

 Another option would be to simply blend the two sets of eye
 coordinates without any special handling of w. This is harder.

 Another option would be to divide by w before blending the two
 sets of eye coordinates. This is awkward because if the weight
 is 1.0 with vertex weighting enabled, the result is not the
 same as disabling vertex weighting since EYE_LINEAR texgen
 is based of of the non-perspective corrected eye coordinates.

 As specified, the normal weighting and combination is performed on
 unnormalized normals. Would the math work better if the normals
 were normalized before weighting and combining?

 RESOLUTION: Vertex weighting of normals is after the
 GL_RESCALE_NORMAL step and before the GL_NORMALIZE step.

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 130

 As specified, feedback and selection should apply vertex weighting
 if enabled. Yuck, that would mean that we need software code for
 vertex weighting.

 RESOLUTION: YES, it should work with feedback and selection.

 Sometimes it would be useful to mirror changes in both modelview
 matrices. For example, the viewing transforms are likely to be
 different, just the final modeling transforms would be different.
 Should there be an API support for mirroring transformations into
 both matrices?

 RESOLUTION: NO. Such support is likely to complicate the
 matrix management in the OpenGL. Applications can do a
 Get matrix from modelview0 and then a LoadMatrix into modelview1
 manually if they need to mirror things.

 I also worry that if we had a mirrored matrix mode, it would
 double the transform concatenation work if used naively.

 Many of the changes to the two modelview matrices will be the same.
 For example, the initial view transform loaded into each will be the
 same. Should there be a way to "mirror" changes to both modelview
 matrices?

 RESOLUTION: NO. Mirroring matrix changes would complicate the
 driver's management of matrices. Also, I am worried that naive
 users would mirror all transforms and lead to lots of redundant
 matrix concatenations. The most efficient way to handle the
 slight differences between the modelview matrices is simply
 to GetFloat the primary matrix, LoadMatrix the values in the
 secondary modelview matrix, and then perform the "extra" transform
 to the secondary modelview matrix.

 Ideally, a glCopyMatrix(GLenum src, GLenum dst) type OpenGL
 command could make this more efficient. There are similiar cases
 where you want the modelview matrix mirrored in the texture matrix.
 This is not the extension to solve this minor problem.

 The post-vertex weighting normal is unlikely to be normalized.
 Should this extension automatically enable normalization?

 RESOLUTION: NO. Normalization should operate as specified.
 The user is responsible for enabling GL_RESCALE_NORMAL or
 GL_NORMALIZE as needed.

 You could imagine cases where the application only sent
 vertex weights of either zero or one and pre-normalized normals
 so that GL_NORMALIZE would not strictly be required.

 Note that the vertex weighting of transformed normals occurs
 BEFORE normalize and AFTER rescaling. See the issue below for
 why this can make a difference.

 How does vertex weighting interact with OpenGL 1.2's GL_RESCALE_NORMAL
 enable?

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 131

 RESOLUTION: Vertex weighting of transformed normals occurs
 BEFORE normalize and AFTER rescaling.

 OpenGL 1.2 permits normal rescaling to behave just like normalize
 and because normalize immediately follows rescaling, enabling
 rescaling can be implementied by simply always enabling normalize.

 Vertex weighting changes this. If one or both of the modelview
 matrices has a non-uniform scale, it may be useful to enable
 rescaling and normalize and this operates differently than
 simply enabling normalize. The difference is that rescaling
 occurs before the normal vertex weighting.

 An implementation that truly treated rescaling as a normalize
 would support both a pre-weighting normalize and a post-weighting
 normalize. Arguably, this is a good thing.

 For implementations that perform simply rescaling and not a full
 normalize to implement rescaling, the rescaling factor can be
 concatenated into each particular inverse modelview matrix.

New Procedures and Functions

 void VertexWeightfEXT(float weight);

 void VertexWeightfvEXT(float *weight);

 void VertexWeightPointerEXT(int size, enum type,
 sizei stride, void *pointer);

New Tokens

 Accepted by the <target> parameter of Enable:

 VERTEX_WEIGHTING_EXT 0x8509

 Accepted by the <mode> parameter of MatrixMode:

 MODELVIEW0_EXT 0x1700 (alias to MODELVIEW enumerant)
 MODELVIEW1_EXT 0x850a

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 VERTEX_WEIGHTING_EXT
 MODELVIEW0_EXT
 MODELVIEW1_EXT
 CURRENT_VERTEX_WEIGHT_EXT 0x850b
 VERTEX_WEIGHT_ARRAY_EXT 0x850c
 VERTEX_WEIGHT_ARRAY_SIZE_EXT 0x850d
 VERTEX_WEIGHT_ARRAY_TYPE_EXT 0x850e
 VERTEX_WEIGHT_ARRAY_STRIDE_EXT 0x850f
 MODELVIEW0_STACK_DEPTH_EXT 0x0BA3 (alias to MODELVIEW_STACK_DEPTH)
 MODELVIEW1_STACK_DEPTH_EXT 0x8502

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 132

 Accepted by the <pname> parameter of GetPointerv:

 VERTEX_WEIGHT_ARRAY_POINTER_EXT 0x8510

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 -- Section 2.6. 2nd paragraph changed:

 "Each vertex is specified with two, three, or four coordinates.
 In addition, a current normal, current texture coordinates, current
 color, and current vertex weight may be used in processing each
 vertex."

 -- Section 2.6. New paragraph after the 3rd paragraph:

 "A vertex weight is associated with each vertex. When vertex
 weighting is enabled, this weight is used as a blending factor
 to blend the position and normals transformed by the primary and
 secondary modelview matrix transforms. The vertex weighting
 functionality takes place completely in the "vertex / normal
 transformation" stage of Figure 2.2."

 -- Section 2.6.3. First paragraph changed to

 "The only GL commands that are allowed within any Begin/End pairs are
 the commands for specifying vertex coordinates, vertex colors, normal
 coordinates, and texture coordinates (Vertex, Color, VertexWeightEXT,
 Index, Normal, TexCoord)..."

 -- Section 2.7. New paragraph after the 4th paragraph:

 "The current vertex weight is set using

 void VertexWeightfEXT(float weight);
 void VertexWeightfvEXT(float *weight);

 This weight is used when vertex weighting is enabled."

 -- Section 2.7. The last paragraph changes from

 "... and one floating-point value to store the current color index."

 to:

 "... one floating-point number to store the vertex weight, and one
 floating-point value to store the current color index."

 -- Section 2.8. Change 1st paragraph to say:

 "The client may specify up to seven arrays: one each to store edge
 flags, texture coordinates, colors, color indices, vertex weights,
 normals, and vertices. The commands"

 Add to functions listed following first paragraph:

 void VertexWeightPointerEXT(int size, enum type,
 sizei stride, void *pointer);

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 133

 Add to table 2.4 (p. 22):

 Command Sizes Types
 ---------------------- ----- -----
 VertexWeightPointerEXT 1 float

 Starting with the second paragraph on p. 23, change to add
 VERTEX_WEIGHT_ARRAY_EXT:

 "An individual array is enabled or disabled by calling one of

 void EnableClientState(enum array)
 void DisableClientState(enum array)

 with array set to EDGE_FLAG_ARRAY, TEXTURE_COORD_ARRAY, COLOR_ARRAY,
 INDEX_ARRAY, VERTEX_ARRAY_WEIGHT_EXT, NORMAL_ARRAY, or VERTEX_ARRAY,
 for the edge flag, texture coordinate, color, secondary color,
 color index, normal, or vertex array, respectively.

 The ith element of every enabled array is transferred to the GL by calling

 void ArrayElement(int i)

 For each enabled array, it is as though the corresponding command
 from section 2.7 or section 2.6.2 were called with a pointer to
 element i. For the vertex array, the corresponding command is
 Vertex<size><type>v, where <size> is one of [2,3,4], and <type> is
 one of [s,i,f,d], corresponding to array types short, int, float, and
 double respectively. The corresponding commands for the edge flag,
 texture coordinate, color, secondary color, color index, and normal
 arrays are EdgeFlagv, TexCoord<size><type>v, Color<size><type>v,
 Index<type>v, VertexWeightfvEXT, and Normal<type>v, respectively..."

 Change pseudocode on p. 27 to disable vertex weight array for canned
 interleaved array formats. After the lines

 DisableClientState(EDGE_FLAG_ARRAY);
 DisableClientState(INDEX_ARRAY);

 insert the line

 DisableClientState(VERTEX_WEIGHT_ARRAY_EXT);

 Substitute "seven" for every occurrence of "six" in the final
 paragraph on p. 27.

 -- Section 2.10. Change the sentence:

 "The model-view matrix is applied to these coordinates to yield eye
 coordinates."

 to:

 "The primary modelview matrix is applied to these coordinates to
 yield eye coordinates. When vertex weighting is enabled, a secondary
 modelview matrix is also applied to the vertex coordinates, the

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 134

 result of the two modelview transformations are weighted by its
 respective vertex weighting factor and combined by addition to yield
 the true eye coordinates. Vertex weighting is enabled or disabled
 using Enable and Disable (see section 2.10.3) with an argument of
 VERTEX_WEIGHTING_EXT."

 Change the 4th paragraph to:

 "If vertex weighting is disabled and a vertex in object coordinates
 is given by (xo yo zo wo)' and the primary model-view matrix is
 M0, then the vertex's eye coordinates are found as

 (xe ye ze we)' = M0 (xo yo zo wo)'

 If vertex weighting is enabled, then the vertex's eye coordinates
 are found as

 (xe0 ye0 ze0 we0)' = M0 (xo yo zo wo)'

 (xe1 ye1 ze1 we1)' = M1 (xo yo zo wo)'

 (xe,ye,ze)' = vw*(xe0,ye0,ze0)' + (1-vw) * (xe1,ye1,ze1)'

 we = we0

 where M1 is the secondary modelview matrix and vw is the current
 vertex weight."

 -- Section 2.10.2 Change the 1st paragraph to say:

 "The projection matrix and the primary and secondary modelview
 matrices are set and modified with a variety of commands. The
 affected matrix is determined by the current matrix mode. The
 current matrix mode is set with

 void MatrixMode(enum mode);

 which takes one of the four pre-defined constants TEXTURE,
 MODELVIEW0, MODELVIEW1, or PROJECTION (note that MODELVIEW is an
 alias for MODELVIEW0). TEXTURE is described later. If the current
 matrix is MODELVIEW0, then matrix operations apply to the primary
 modelview matrix; if MODELVIEW1, then matrix operations apply to
 the secondary modelview matrix; if PROJECTION, then they apply to
 the projection matrix."

 Change the 9th paragraph to say:

 "There is a stack of matrices for each of the matrix modes. For the
 MODELVIEW0 and MODELVIEW1 modes, the stack is at least 32 (that is,
 there is a stack of at least 32 modelview matrices). ..."

 Change the last paragraph to say:

 "The state required to implement transformations consists of a
 four-valued integer indicating the current matrix mode, a stack of
 at least two 4x4 matrices for each of PROJECTION and TEXTURE with
 associated stack pointers, and two stacks of at least 32 4x4 matrices

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 135

 with an associated stack pointer for MODELVIEW0 and MODELVIEW1.
 Initially, there is only one matrix on each stack, and all matrices
 are set to the identity. The initial matrix mode is MODELVIEW0."

 -- Section 2.10.3 Change the 2nd and 7th paragraphs to say:

 "For a modelview matrix M, the normal for this matrix is transformed
 to eye coordinates by:

 (nx' ny' nz' q') = (nx ny nz q) * M^-1

 where, if (x y z w)' are the associated vertex coordinates, then

 / 0, w= 0
 |
 q = | -(nx ny nz) (x y z)' (2.1)
 | --------------------, w != 0
 \ w

 Implementations may choose instead to transform (x y z)' to eye
 coordinates using

 (nx' ny' nz') = (nx ny nz) * Mu^-1

 Where Mu is the upper leftmost 3x3 matrix taken from M.

 Rescale multiplies the transformed normals by a scale factor

 (nx" ny" nz") = f (nx' ny' nz')

 If rescaling is disabled, then f = 1. If rescaling is enabled, then
 f is computed as (mij denotes the matrix element in row i and column j
 of M^-1, numbering the topmost row of the matrix as row 1 and the

leftmost column as column 1

 1
 f = ---------------------------
 sqrt(m31^2 + m32^2 + m33^2)

 Note that if the normals sent to GL were unit length and the model-view
 matrix uniformly scales space, the rescale make sthe transformed normals
 unit length.

 Alternatively, an implementation may chose f as

 1
 f = ---------------------------
 sqrt(nx'^2 + ny'^2 + nz'^2)

 recomputing f for each normal. This makes all non-zero length
 normals unit length regardless of their input length and the nature
 of the modelview matrix.

 After rescaling, the final transformed normal used in lighting, nf,
 depends on whether vertex weighting is enabled or not.

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 136

 When vertex weighting is disabled, nf is computed as

 nf = m * (nx"0 ny"0 nz"0)

 where (nx"0 ny"0 nz"0) is the normal transformed as described
 above using the primary modelview matrix for M.

 If normalization is enabled m=1. Otherwise

 1
 m = ------------------------------
 sqrt(nx"0^2 + ny"0^2 + nz"0^2)

 However when vertex weighting is enabled, the normal is transformed
 twice as described above, once by the primary modelview matrix and
 again by the secondary modelview matrix, weighted using the current
 per-vertex weight, and normalized. So nf is computed as

 nf = m * (nx"w ny"w nz"w)

 where nw is the weighting normal computed as

 nw = vw * (nx"0 ny"0 nz"0) + (1-vw) * (nx"1 ny"1 nz"1)

 where (nx"0 ny"0 nz"0) is the normal transformed as described
 above using the primary modelview matrix for M, and (nx"1 ny"1 nz"1) is
 the normal transformed as described above using the secondary modelview
 matrix for M, and vw is the current pver-vertex weight."

 -- Section 2.12. Changes the 3rd paragraph:

 "The coordinates are treated as if they were specified in a
 Vertex command. The x, y, z, and w coordinates are transformed
 by the current primary modelview and perspective matrices. These
 coordinates, along with current values, are used to generate a
 color and texture coordinates just as done for a vertex, except
 that vertex weighting is always treated as if it is disabled."

Additions to Chapter 3 of the GL Specification (Rasterization)

 None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

NVIDIA OpenGL Extension Specifications EXT_vertex_weighting

 137

Additions to the GLX Specification

 None

GLX Protocol

 A new GL rendering command is added. The following command is sent
 to the server as part of a glXRender request:

 WeightVertexEXT
 2 8 rendering command length
 2 ???? rendering command opcode
 4 FLOAT32 weight0

Errors

 The current vertex weight can be updated at any time. In particular
 WeightVertexEXT can be called between a call to Begin and the
 corresponding call to End.

 INVALID_VALUE is generated if VertexWeightPointerEXT parameter <size>
 is not 1.

 INVALID_ENUM is generated if VertexWeightPointerEXT parameter <type>
 is not FLOAT.

 INVALID_VALUE is generated if VertexWeightPointerEXT parameter <stride>
 is negative.

New State

(table 6.5, p196)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
CURRENT_VERTEX_WEIGHT_EXT F GetFloatv 1 Current 2.8 current
 vertex weight

(table 6.6, p197)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- --- ---------
VERTEX_WEIGHT_ARRAY_EXT B IsEnabled False Vertex weight enable 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_SIZE_EXT Z+ GetIntegerv 1 Weights per vertex 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_TYPE_EXT Z1 GetIntegerv FLOAT Type of weights 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_STRIDE_EXT Z GetIntegerv 0 Stride between weights 2.8 vertex-array
VERTEX_WEIGHT_ARRAY_POINTER_EXT Y GetPointerv 0 Pointer to vertex weight array 2.8 vertex-array

(table 6.7, p198)
Get Value Type Get Command Initial Value Description Sec Attribute
--------- ---- ----------- ------------- ----------- ------ ---------
MODELVIEW0_MATRIX_EXT 32*xM4 GetFloatv Identity Primary modelview 2.10.2 -
 stack
MODELVIEW1_MATRIX_EXT 32*xM4 GetFloatv Identity Secondary modelview 2.10.2 -
 stack
MODELVIEW0_STACK_DEPTH_EXT Z+ GetIntegerv 1 Primary modelview 2.10.2 -
 stack depth
MODELVIEW1_STACK_DEPTH_EXT Z+ GetIntegerv 1 Secondary modelview 2.10.2 -
 stack depth
MATRIX_MODE Z4 GetIntegerv MODELVIEW0 Current matrix mode 2.10.2 transform
VERTEX_WEIGHTING_EXT B IsEnabled False Vertex weighting 2.10.2 transform/enable
 on/off

 NOTE: MODELVIEW_MATRIX is an alias for MODELVIEW0_MATRIX_EXT
 MODELVIEW_STACK_DEPTH is an alias for MODELVIEW0_STACK_DEPTH_EXT

EXT_vertex_weighting NVIDIA OpenGL Extension Specifications

 138

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifications NV_blend_square

 139

Name

 NV_blend_square

Name Strings

 GL_NV_blend_square

Version

 Date: 8/7/1999 Version: 1.0

Number

 ???

Dependencies

 Written based on the wording of the OpenGL 1.2 specification.

Overview

 It is useful to be able to multiply a number by itself in the blending
 stages -- for example, in certain types of specular lighting effects
 where a result from a dot product needs to be taken to a high power.

 This extension provides four additional blending factors to permit
 this and other effects: SRC_COLOR and ONE_MINUS_SRC_COLOR for source
 blending factors, and DST_COLOR and ONE_MINUS_DST_COLOR for destination
 blending factors.

New Procedures and Functions

 None

New Tokens

 None

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

 None

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 Two lines are added to each of tables 4.1 and 4.2:

NV_blend_square NVIDIA OpenGL Extension Specifications

 140

 Value Blend Factors
 ----- -------------
 ZERO (0, 0, 0, 0)
 ONE (1, 1, 1, 1)
 SRC_COLOR (Rs, Gs, Bs, As) NEW
 ONE_MINUS_SRC_COLOR (1, 1, 1, 1) - (Rs, Gs, Bs, As) NEW
 DST_COLOR (Rd, Gd, Bd, Ad)
 ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd, Gd, Bd, Ad)
 SRC_ALPHA (As, As, As, As) / Ka
 ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
 DST_ALPHA (Ad, Ad, Ad, Ad) / Ka
 ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
 CONSTANT_COLOR (Rc, Gc, Bc, Ac)
 ONE_MINUS_CONSTANT_COLOR (1, 1, 1, 1) - (Rc, Gc, Bc, Ac)
 CONSTANT_ALPHA (Ac, Ac, Ac, Ac)
 ONE_MINUS_CONSTANT_ALPHA (1, 1, 1, 1) - (Ac, Ac, Ac, Ac)
 SRC_ALPHA_SATURATE (f, f, f, 1)

 Table 4.1: Values controlling the source blending function and the
 source blending values they compute. f = min(As, 1 - Ad).

 Value Blend Factors
 ----- -------------
 ZERO (0, 0, 0, 0)
 ONE (1, 1, 1, 1)
 SRC_COLOR (Rs, Gs, Bs, As)
 ONE_MINUS_SRC_COLOR (1, 1, 1, 1) - (Rs, Gs, Bs, As)
 DST_COLOR (Rd, Gd, Bd, Ad) NEW
 ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd, Gd, Bd, Ad) NEW
 SRC_ALPHA (As, As, As, As) / Ka
 ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As, As, As, As) / Ka
 DST_ALPHA (Ad, Ad, Ad, Ad) / Ka
 ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad, Ad, Ad, Ad) / Ka
 CONSTANT_COLOR_EXT (Rc, Gc, Bc, Ac)
 ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) - (Rc, Gc, Bc, Ac)
 CONSTANT_ALPHA_EXT (Ac, Ac, Ac, Ac)
 ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) - (Ac, Ac, Ac, Ac)

 Table 4.2: Values controlling the destination blending function and
 the destination blending values they compute.

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 None

NVIDIA OpenGL Extension Specifications NV_blend_square

 141

New State

(table 6.15, page 205)
 Get Value Type Get Command Initial Value Sec Attribute
 ------------------------ ---- ------------ ------------- ----- ---------
 BLEND_SRC Z15 GetIntegerv ONE 4.1.6 color-buffer
 BLEND_DST Z14 GetIntegerv ZERO 4.1.6 color-buffer

NOTE: the only change is that Z13 changes to Z15 and Z12 changes to Z14

New Implementation Dependent State

 None

NV_fog_distance NVIDIA OpenGL Extension Specifications

 142

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

Name

 NV_fog_distance

Name Strings

 GL_NV_fog_distance

Notice

 Copyright NVIDIA Corporation, 1999.
 NVIDIA Proprietary.

Version

 August 19, 1999

Number

 ??

Dependencies

 Written based on the wording of the OpenGL 1.2 specification.

Overview

 Ideally, the fog distance (used to compute the fog factor as
 described in Section 3.10) should be computed as the per-fragment
 Euclidean distance to the fragment center from the eye. In practice,
 implementations "may choose to approximate the eye-coordinate
 distance from the eye to each fragment center by abs(ze). Further,
 [the fog factor] f need not be computed at each fragment, but may
 be computed at each vertex and interpolated as other data are."

 This extension provides the application specific control over how
 OpenGL computes the distance used in computing the fog factor.

 The extension supports three fog distance modes: "eye plane absolute",
 where the fog distance is the absolute planar distance from the eye
 plane (i.e., OpenGL's standard implementation allowance as cited above);
 "eye plane", where the fog distance is the signed planar distance
 from the eye plane; and "eye radial", where the fog distance is
 computed as a Euclidean distance. In the case of the eye radial
 fog distance mode, the distance may be computed per-vertex and then
 interpolated per-fragment.

 The intent of this extension is to provide applications with better
 control over the tradeoff between performance and fog quality.
 The "eye planar" modes (signed or absolute) are straightforward
 to implement with good performance, but scenes are consistently
 under-fogged at the edges of the field of view. The "eye radial"
 mode can provide for more accurate fog at the edges of the field of
 view, but this assumes that either the eye radial fog distance is
 computed per-fragment, or if the fog distance is computed per-vertex
 and then interpolated per-fragment, then the scene must be

NVIDIA OpenGL Extension Specifications NV_fog_distance

 143

N
V

ID
IA

 P
roprietary.

 sufficiently tessellated.

Issues

 What should the default state be?

 IMPLEMENTATION DEPENDENT.

 The EYE_PLANE_ABSOLUTE_NV mode is the most consistent with the way
 most current OpenGL implementations are implemented without this
 extension, but because this extension provides specific control
 over a capability that core OpenGL is intentionally lax about,
 the default fog distance mode is left implementation dependent.
 We would not want a future OpenGL implementation that supports
 fast EYE_RADIAL_NV fog distance to be stuck using something less.

 Advice: If an implementation can provide fast per-pixel EYE_RADIAL_NV
 support, then EYE_RADIAL_NV is the ideal default, but if not, then
 EYE_PLANE_ABSOLUTE_NV is the most reasonable default mode.

 How does this extension interact with the EXT_fog_coord extension?

 If FOG_COORDINATE_SOURCE_EXT is set to FOG_COORDINATE_EXT,
 then the fog distance mode is ignored. However, the fog
 distance mode is used when the FOG_COORDINATE_SOURCE_EXT is
 set to FRAGMENT_DEPTH_EXT. Essentially, when the EXT_fog_coord
 functionality is enabled, the fog distance is supplied by the
 user-supplied fog-coordinate so no automatic fog distance computation
 is performed.

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameters of Fogf, Fogi, Fogfv, Fogiv,
 GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev:

 FOG_DISTANCE_MODE_NV 0x855a

 When the <pname> parameter of Fogf, Fogi, Foggv, and Fogiv, is
 FOG_DISTANCE_MODE_NV, then the value of <param> or the value pointed
 to by <params> may be:

 EYE_RADIAL_NV 0x855b
 EYE_PLANE
 EYE_PLANE_ABSOLUTE_NV 0x855c

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

 -- Section 3.10 "Fog"

NV_fog_distance NVIDIA OpenGL Extension Specifications

 144

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 Add to the end of the 3rd paragraph:

 "If pname is FOG_DISTANCE_MODE_NV, then param must be, or params
 must point to an integer that is one of the symbolic constants
 EYE_PLANE_ABSOLUTE_NV, EYE_PLANE, or EYE_RADIAL_NV and this symbolic
 constant determines how the fog distance should be computed."

 Replace the 4th paragraph beginning "An implementation may choose
 to approximate ..." with:

 "When the fog distance mode is EYE_PLANE_ABSOLUTE_NV, the fog
 distance z is approximated by abs(ze) [where ze is the Z component
 of the fragment's eye position]. When the fog distance mode is
 EYE_PLANE, the fog distance z is approximated by ze. When the
 fog distance mode is EYE_RADIAL_NV, the fog distance z is computed
 as the Euclidean distance from the center of the fragment in eye
 coordinates to the eye position. Specifically:

 z = sqrt(xe*xe + ye*ye + ze*ze);

 In the EYE_RADIAL_NV fog distance mode, the Euclidean distance
 is permitted to be computed per-vertex, and then interpolated
 per-fragment."

 Change the last paragraph to read:

 "The state required for fog consists of a three valued integer to
 select the fog equation, a three valued integer to select the fog
 distance mode, three floating-point values d, e, and s, and RGBA fog
 color and a fog color index, and a single bit to indicate whether
 or not fog is enabled. In the initial state, fog is disabled,
 FOG_MODE is EXP, FOG_DISTANCE_NV is implementation defined, d =
 1.0, e = 1.0, and s = 0.0; Cf = (0,0,0,0) and if = 0."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated when Fog is called with a <pname> of
 FOG_DISTANCE_MODE_NV and the value of <param> or what is pointed
 to by <params> is not one of EYE_PLANE_ABSOLUTE_NV, EYE_PLANE,
 or EYE_RADIAL_NV.

NVIDIA OpenGL Extension Specifications NV_fog_distance

 145

N
V

ID
IA

 P
roprietary.

New State

(table 6.8, p198) add the entry:

Get Value Type Get Command Initial Value Description Sec Attribute
-------------------- ---- ----------- --------------- ----------- ----- ---------
FOG_DISTANCE_MODE_NV Z3 GetIntegerv implementation Determines how 3.10 fog
 dependent fog distance
 is computed

New Implementation State

 None

NV_register_combiners NVIDIA OpenGL Extension Specifications

 146

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

Name

 NV_register_combiners

Name Strings

 GL_NV_register_combiners

Notice

 Copyright NVIDIA Corporation, 1999.
 NVIDIA Proprietary.

Version

 November 15, 1999

Number

 ??

Dependencies

 ARB_multitexture, assuming the value of MAX_ACTIVE_TEXTURES_ARB is
 at least 2.

 Written based on the wording of the OpenGL 1.2 specification with
 the ARB_multitexture appendix E.

Overview

 NVIDIA's next-generation graphics processor and its derivative designs
 support an extremely configurable mechanism know as "register combiners"
 for computing fragment colors.

 The register combiner mechanism is a significant redesign of NVIDIA's
 original TNT combiner mechanism as introduced by NVIDIA's RIVA
 TNT graphics processor. Familiarity with the TNT combiners will
 help the reader appreciate the greatly enhanced register combiners
 functionality (see the NV_texture_env_combine4 OpenGL extension
 specification for this background). The register combiner mechanism
 has the following enhanced functionality:

 The numeric range of combiner computations is from [-1,1]
 (instead of TNT's [0,1] numeric range),

 The set of available combiner inputs is expanded to include the
 secondary color, fog color, fog factor, and a second combiner
 constant color (TNT's available combiner inputs consist of
 only zero, a single combiner constant color, the secondary color,
 texture 0, texture 1, and, in the case of combiner 1, the result
 of combiner 0).

 Each combiner variable input can be independently scaled and
 biased into several possible numeric ranges (TNT can only
 complement combiner inputs).

NVIDIA OpenGL Extension Specifications NV_register_combiners

 147

N
V

ID
IA

 P
roprietary.

 Each combiner stage computes three distinct outputs (instead
 TNT's single combiner output).

 The output operations include support for computing dot products
 (TNT has no support for computing dot products).

 After each output operation, there is a configurable scale and bias
 applied (TNT's combiner operations builds in a scale and/or bias
 into some of its combiner operations).

 Each input variable for each combiner stage is fetched from any
 entry in a combiner register set. Moreover, the outputs of each
 combiner stage are written into the register set of the subsequent
 combiner stage (TNT could only use the result from combiner 0 as
 a possible input to combiner 1; TNT lacks the notion of an
 input/output register set).

 The register combiner mechanism supports at least two general combiner
 stages and then a special final combiner stage appropriate for
 applying a color sum and fog computation (TNT provides two simpler
 combiner stages, and TNT's color sum and fog stages are hard-wired
 and not subsumed by the combiner mechanism as in register combiners).

 The register combiners fit into the OpenGL pipeline as a rasterization
 processing stage operating in parallel to the traditional OpenGL
 texture environment, color sum, AND fog application. Enabling this
 extension bypasses OpenGL's existing texture environment, color sum,
 and fog application processing and instead use the register combiners.
 The combiner and texture environment state is orthogonal so
 modifying combiner state does not change the traditional OpenGL
 texture environment state and the texture environment state is
 ignored when combiners are enabled.

 OpenGL application developers can use the register combiner mechanism
 for very sophisticated shading techniques. For example, an
 approximation of Blinn's bump mapping technique can be achieved with
 the combiner mechanism. Additionally, multi-pass shading models
 that require several passes with unextended OpenGL 1.2 functionality
 can be implemented in several fewer passes with register combiners.
 For example, Id Software's Quake 3 shading model that normally
 requires five rendering passes can be performed in a single pass
 with register combiners.

Issues

 Should we expose the full register combiners mechanism?

 RESOLUTION: NO. We ignore small bits of NV10 hardware
 functionality. The texture LOD input is ignored. We also ignore
 the inverts on input to the EF product.

 Do we provide full gets for all the combiner state?

 RESOLUTION: YES.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 148

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 Do we parameterize combiner input and output updates to avoid
 enumerant explosions?

 RESOLUTION: YES. To update a combiner stage input variable, you
 need to specify the <stage>, <portion>, and <variable>. To update a
 combiner stage output operation, you need to specify the <stage> and
 <portion>. This does mean that we need to add special Get routines
 that are likewise parameterized. Hence, GetCombinerInputParameter*,
 GetCombinerOutputParameter*, and GetFinalCombinerInputParameter*.

 Is the register combiner functionality a super-set of the TNT combiner
 functionality?

 Yes, but only in the sense of being a computational super-set.
 All computations performed with the TNT combiners can be performed
 with the register combiners, but the sequence of operations necessary
 to configure an identical computational result can be quite
 different.

 For example, the TNT combiners have an operation that includes
 a final complement operation. The register combiners can perform
 range mappings only on inputs, but not on outputs. The register
 combiners can mimic the TNT operation with a post-operation
 complement only by taking pains to complement on input any uses
 of the output in later combiner stages.

 What this does mean is that NV10's hardware functionality
 will permit support for both the NV_register_combiners AND
 NV_texture_env_combine4 extensions.

 Note the existance of an "speclit" input complement bit supported
 by NV10 (but not accessible through the NV_register_combiners extensions).

 Should we say anything about the precision of the combiner
 computations?

 RESOLUTION: NO. The spec is written as if the computations are
 done on floating point values ranging from -1.0 to 1.0 (clamping is
 specified where this range is exceeded). The fact that NV10 does
 the computations as 9-bit signed fixed point is not mentioned in
 the spec. This permits a future design to support more precision
 or use a floating pointing representation.

 What should the initial combiner state be?

 RESOLUTION: See tables NV_register_combiners.4 and
 NV_register_combiners.5. The default state has one general combiner
 stage active that modulates the incoming color with texture 0.
 The final combiner is setup initially to implement OpenGL 1.2's
 standard color sum and fog stages.

 What should happen to the TEXTURE0_ARB and TEXTUER1_ARB inputs if
 one or both textures are disabled?

 RESOLUTION: The value of these inputs is undefined.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 149

N
V

ID
IA

 P
roprietary.

 What do the TEXTURE0_ARB and TEXTURE1_ARB inputs correspond to?
 Does the number correspond to the absolute texture unit number
 or is the number based on how many textures are enabled (ie,
 TEXTURE_ARB0 would correspond to the 2nd texture unit if the
 2nd unit is enabled, but the 1st is disabled).

 RESOLUTION: The absolute texture unit.

 This should be a lot less confusing to the programmer than having
 the texture inputs switch textures if texture 0 is disabled.

 Note that the proposed hardware actually determines the TEXTURE0
 and TEXTURE1 input based on which texture is enabled. This means
 it is up to the ICD to properly update the combiner state when just
 one texture is enabled. Since we will already have to do this to
 track the standard OpenGL texture environment for ARB_multitexture,
 we can do it for this extension too.

 Should the combiners state be PushAttrib/PopAttrib'ed along with
 the texture state?

 RESOLUTION: YES.

 Should we advertise the LOD fractional input to the combiners?

 RESOLUTION: NO.

 There will be a performance impact when two combiner stages are
 enabled versus just one stage. Should we mention that somewhere?

 RESOLUTION: NO. (But it is worth mentioning in this issues
 section.)

 Should the scale and bias for the CombinerOutputNV be indicated
 by enumerants or specified outright as floats?

 RESOLUTION: ENUMERANTS. While some future combiners might
 support an arbitrary scale & bias specified as floats, NV10 just
 does the enumerated options.

 Should a dot product be computed in parralel with the sum of
 products?

 RESOLUTION: NO. Language has been added ot the CombinerOutputNV
 discussion saying that if either <abDotProduct> or <cdDotProduct>
 is true, then <sumOutput> must be GL_DISCARD.

 The rationale for this is that we want to minimize the number of
 adders that are required to ease a transition to floating point.

New Procedures and Functions

 CombinerParameterfvNV(GLenum pname,
 const GLfloat *params);

 CombinerParameterivNV(GLenum pname,
 const GLint *params);

NV_register_combiners NVIDIA OpenGL Extension Specifications

 150

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 CombinerParameterfNV(GLenum pname,
 GLfloat param);

 CombinerParameteriNV(GLenum pname,
 GLint param);

 CombinerInputNV(GLenum stage,
 GLenum portion,
 GLenum variable,
 GLenum input,
 GLenum mapping,
 GLenum componentUsage);

 CombinerOutputNV(GLenum stage,
 GLenum portion,
 GLenum abOutput,
 GLenum cdOutput,
 GLenum sumOutput,
 GLenum scale,
 GLenum bias,
 GLboolean abDotProduct,
 GLboolean cdDotProduct,
 GLboolean muxSum);

 FinalCombinerInputNV(GLenum variable,
 GLenum input,
 GLenum mapping,
 GLenum componentUsage);

 GetCombinerInputParameterfvNV(GLenum stage,
 GLenum portion,
 GLenum variable,
 GLenum pname,
 GLfloat *params);

 GetCombinerInputParameterivNV(GLenum stage,
 GLenum portion,
 GLenum variable,
 GLenum pname,
 GLint *params);

 GetCombinerOutputParameterfvNV(GLenum stage,
 GLenum portion,
 GLenum pname,
 GLfloat *params);

 GetCombinerOutputParameterivNV(GLenum stage,
 GLenum portion,
 GLenum pname,
 GLint *params);

 GetFinalCombinerInputParameterfvNV(GLenum variable,
 GLenum pname,
 GLfloat *params);

NVIDIA OpenGL Extension Specifications NV_register_combiners

 151

N
V

ID
IA

 P
roprietary.

 GetFinalCombinerInputParameterivNV(GLenum variable,
 GLenum pname,
 GLfloat *params);

New Tokens

 Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 REGISTER_COMBINERS_NV 0x8522

 Accepted by the <stage> parameter of CombinerInputNV,
 CombinerOutputNV, GetCombinerInputParameterfvNV,
 GetCombinerInputParameterivNV, GetCombinerOutputParameterfvNV,
 and GetCombinerOutputParameterivNV:

 COMBINER0_NV 0x8550
 COMBINER1_NV 0x8551
 COMBINER2_NV 0x8552
 COMBINER3_NV 0x8553
 COMBINER4_NV 0x8554
 COMBINER5_NV 0x8555
 COMBINER6_NV 0x8556
 COMBINER7_NV 0x8557

 Accepted by the <variable> parameter of CombinerInputNV,
 GetCombinerInputParameterfvNV, and GetCombinerInputParameterivNV:

 VARIABLE_A_NV 0x8523
 VARIABLE_B_NV 0x8524
 VARIABLE_C_NV 0x8525
 VARIABLE_D_NV 0x8526

 Accepted by the <variable> parameter of FinalCombinerInputNV,
 GetFinalCombinerInputParameterfvNV, and
 GetFinalCombinerInputParameterivNV:

 VARIABLE_A_NV
 VARIABLE_B_NV
 VARIABLE_C_NV
 VARIABLE_D_NV
 VARIABLE_E_NV 0x8527
 VARIABLE_F_NV 0x8528
 VARIABLE_G_NV 0x8529

NV_register_combiners NVIDIA OpenGL Extension Specifications

 152

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 Accepted by the <input> parameter of CombinerInputNV:

 ZERO (not new)
 CONSTANT_COLOR0_NV 0x852a
 CONSTANT_COLOR1_NV 0x852b
 FOG (not new)
 PRIMARY_COLOR_NV 0x852c
 SECONDARY_COLOR_NV 0x852d
 SPARE0_NV 0x852e
 SPARE1_NV 0x852f
 TEXTURE0_ARB (see ARB_multitexture)
 TEXTURE1_ARB (see ARB_multitexture)

 Accepted by the <mapping> parameter of CombinerInputNV:

 UNSIGNED_IDENTITY_NV 0x8536
 UNSIGNED_INVERT_NV 0x8537
 EXPAND_NORMAL_NV 0x8538
 EXPAND_NEGATE_NV 0x8539
 HALF_BIAS_NORMAL_NV 0x853a
 HALF_BIAS_NEGATE_NV 0x853b
 SIGNED_IDENTITY_NV 0x853c
 SIGNED_NEGATE_NV 0x853d

 Accepted by the <input> parameter of FinalCombinerInputNV:

 ZERO (not new)
 CONSTANT_COLOR0_NV
 CONSTANT_COLOR1_NV
 FOG (not new)
 PRIMARY_COLOR_NV
 SECONDARY_COLOR_NV
 SPARE0_NV
 SPARE1_NV
 TEXTURE0_ARB (see ARB_multitexture)
 TEXTURE1_ARB (see ARB_multitexture)
 E_TIMES_F_NV 0x8531
 SPARE0_PLUS_SECONDARY_COLOR_NV 0x8532

 Accepted by the <mapping> parameter of FinalCombinerInputNV:

 UNSIGNED_IDENTITY_NV
 UNSIGNED_INVERT_NV

 Accepted by the <scale> parameter of CombinerOutputNV:

 NONE (not new)
 SCALE_BY_TWO_NV 0x853e
 SCALE_BY_FOUR_NV 0x853f
 SCALE_BY_ONE_HALF_NV 0x8540

 Accepted by the <bias> parameter of CombinerOutputNV:

 NONE (not new)
 BIAS_BY_NEGATIVE_ONE_HALF_NV 0x8541

NVIDIA OpenGL Extension Specifications NV_register_combiners

 153

N
V

ID
IA

 P
roprietary.

 Accepted by the <abOutput>, <cdOutput>, and <sumOutput> parameter
 of CombinerOutputNV:

 DISCARD_NV 0x8530
 PRIMARY_COLOR_NV
 SECONDARY_COLOR_NV
 SPARE0_NV
 SPARE1_NV
 TEXTURE0_ARB (see ARB_multitexture)
 TEXTURE1_ARB (see ARB_multitexture)

 Accepted by the <pname> parameter of GetCombinerInputParameterfvNV
 and GetCombinerInputParameterivNV:

 COMBINER_INPUT_NV 0x8542
 COMBINER_MAPPING_NV 0x8543
 COMBINER_COMPONENT_USAGE_NV 0x8544

 Accepted by the <pname> parameter of GetCombinerOutputParameterfvNV
 and GetCombinerOutputParameterivNV:

 COMBINER_AB_DOT_PRODUCT_NV 0x8545
 COMBINER_CD_DOT_PRODUCT_NV 0x8546
 COMBINER_MUX_SUM_NV 0x8547
 COMBINER_SCALE_NV 0x8548
 COMBINER_BIAS_NV 0x8549
 COMBINER_AB_OUTPUT_NV 0x854a
 COMBINER_CD_OUTPUT_NV 0x854b
 COMBINER_SUM_OUTPUT_NV 0x854c

 Accepted by the <pname> parameter of CombinerParameterfvNV,
 CombinerParameterivNV, GetBooleanv, GetDoublev, GetFloatv, and
 GetIntegerv:

 CONSTANT_COLOR0_NV
 CONSTANT_COLOR1_NV

 Accepted by the <pname> parameter of CombinerParameterfvNV,
 CombinerParameterivNV, CombinerParameterfNV, CombinerParameteriNV,
 GetBooleanv, GetDoublev, GetFloatv, and GetIntegerv:

 NUM_GENERAL_COMBINERS_NV 0x854e
 COLOR_SUM_CLAMP_NV 0x854f

 Accepted by the <pname> parameter of GetFinalCombinerInputParameterfvNV
 and GetFinalCombinerInputParameterivNV:

 COMBINER_INPUT_NV
 COMBINER_MAPPING_NV
 COMBINER_COMPONENT_USAGE_NV

 Accepted by the <pname> parameter of GetBooleanv, GetDoublev,
 GetFloatv, and GetIntegerv:

 MAX_GENERAL_COMBINERS_NV 0x854d

NV_register_combiners NVIDIA OpenGL Extension Specifications

 154

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

 -- Figure 3.1 "Rasterization" (page 58)

 + Change the "Texturing" block to say "Texture Fetching".

 + Insert a new block between "Texture Fetching" and "Color Sum".
 Name the new block "Texture Environment Application".

 + Insert a new block after "Texture Fetching". Name the new block
 "Register Combiners Application".

 + The output of the "Texture Fetching" stage feeds to both "Texture
 Environment Application" and "Register Combiners Application".

 + The input for "Color Sum" comes from "Texture Environment
 Application".

 + The output to "Fragments" is switched (controlled by
 Disable/Enable REGISTER_COMBINERS_NV) between the output of "Fog"
 and "Register Combiners Application".

 Essentially, when register combiners are enabled, the entire standard
 texture environment application, color sum, and fog blocks are
 replaced with the single register combiners block. [Note that this
 is different from how the NV_texture_env_combine4 extension works;
 that extension controls the texture environment application
 block, but still uses the standard color sum and fog blocks.]

 -- NEW Section 3.8.12 "Register Combiners Application"

 "In parallel to the texture application, color sum, and fog processes
 described in sections 3.8.10, 3.9, and 3.10, register combiners provide
 a means of computing fcoc, the final combiner output color, for
 each fragment generated by rasterization.

 The register combiners consist of two or more general combiner stages
 arranged in a fixed sequence ordered by each combiner stage's number.
 An implementation supports a maximum number of general combiners
 stages, which may be queried by calling GetIntegerv with the symbolic
 constant MAX_GENERAL_COMBINERS_NV. Implementations must
 support at least two general combiner stages. The general combiner
 stages are named COMBINER0_NV, COMBINER1_NV, and so on.

 Each general combiner in the sequence receives its inputs and
 computes its outputs in an identical manner. At the end of the
 sequence of general combiner stages, there is a final combiner stage
 that operates in a different manner than the general combiner stages.
 The general combiner operation is described first, followed by a
 description of the final combiner operation.

 Each combiner stage (the general combiner stages and the final
 combiner stage) has an associated combiner register set. Each

NVIDIA OpenGL Extension Specifications NV_register_combiners

 155

N
V

ID
IA

 P
roprietary.

 combiner register set contains <n> RGBA vectors with components
 ranging from -1.0 to 1.0 where <n> is 8 plus the maximum number
 of active textures supported (that is, the implementation's value
 for MAX_ACTIVE_TEXTURES_ARB). The combiner register set entries
 are listed in the table NV_register_combiners.1.

 [Table NV_register_combiners.1]

 Initial Output
 Register Name Value Reference Status
 --------------------- ---------- ---------------- ---------
 ZERO 0 - read only
 CONSTANT_COLOR0_NV ccc0 Section 3.8.12.1 read only
 CONSTANT_COLOR1_NV ccc1 Section 3.8.12.1 read only
 FOG Cf Section 3.10 read only
 PRIMARY_COLOR_NV cpri Section 2.13.1 read/write
 SECONDARY_COLOR_NV csec Section 2.13.1 read/write
 SPARE0_NV see below Section 3.8.12 read/write
 SPARE1_NV undefined Section 3.8.12 read/write
 TEXTURE0_ARB CT0 Figure E.2 read/write
 TEXTURE1_ARB CT1 Figure E.2 read/write
 TEXTURE<i>_ARB CT<i> Figure E.2 read/write

 The register set of COMBINER0_NV, the first combiner stage,
 is initialized as described in table NV_register_combiners.1.

 The initial value of the alpha portion of register SECONDARY_COLOR_NV
 is undefined. The initial value of the alpha portion of register
 SPARE0_NV is the alpha component of texture 0 if texturing is
 enabled for texture 0; however, the initial value of the RGB portion
 SPARE0_NV is undefined. The initial value of the SPARE1_NV register
 is undefined. The initial of registers TEXTURE0_ARB, TEXTURE1_ARB,
 and TEXTURE<i>_ARB are undefined if texturing is not enabled for
 textures 0, 1, and <i>, respectively.

 3.8.12.1 Combiner Parameters

 Combiner parameters are specified by

 CombinerParameterfvNV(GLenum pname, const GLfloat *params);
 CombinerParameterivNV(GLenum pname, const GLint *params);
 CombinerParameterfNV(GLenum pname, GLfloat param);
 CombinerParameteriNV(GLenum pname, GLint param);

 <pname> is a symbolic constant indicating which parameter is to be
 set as described in the table NV_register_combiners.2:

 [Table NV_register_combiners.2]
 Number
 Parameter Name of values Type
 --------- ------------------------- --------- ---------------
 ccc0 CONSTANT_COLOR0_NV 4 color
 ccc1 CONSTANT_COLOR1_NV 4 color
 ngc NUM_GENERAL_COMBINERS_NV 1 positive integer
 csc COLOR_SUM_CLAMP_NV 1 boolean

NV_register_combiners NVIDIA OpenGL Extension Specifications

 156

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 <params> is a pointer to a group of values to which to set the
 indicated parameter. <param> is simply the indicated parameter.
 The number of values pointed to depends on the parameter being
 set as shown in the table above. Color parameters specified with
 CombinerParameter*NV are converted to floating-point values (if
 specified as integers) as indicated by Table 2.6 for signed integers.
 The floating-point color values are then clamped to the range [0,1].

 The values ccc0 and ccc1 named by CONSTANT_COLOR0_NV and
 CONSTANT_COLOR1_NV are constant colors available for inputs to the
 combiner stages. The value ngc named by NUM_GENERAL_COMBINERS_NV
 is a positive integer indicating how many general combiner stages are
 active, that is, how many general combiner stages a fragment should
 be processed by. Setting ngc to a value less than one or
 greater than the value of MAX_GENERAL_COMBINERS_NV generates an
 INVALID_VALUE error. The value csc named by COLOR_SUM_CLAMP_NV
 is a boolean described in section 3.8.12.3.

 3.8.12.2 General Combiner Stage Operation

 The command

 CombinerInputNV(GLenum stage,
 GLenum portion,
 GLenum variable,
 GLenum input,
 GLenum mapping,
 GLenum componentUsage);

 controls the assignment of all the general combiner input variables.
 For the RGB combiner portion, these are Argb, Brgb, Crgb, and
 Drgb; and for the combiner alpha portion, these are Aa, Ba, Ca,
 and Da. The <stage> parameter is a symbolic constant of the form
 COMBINER<i>_NV, indicating that general combiner stage <i> is to
 be updated. The constant COMBINER<i>_NV = COMBINER0_NV + <i>
 where <i> is in the range 0 to <k>-1 and <k> is the implementation
 dependent value of MAX_COMBINERS_NV. The <portion> parameter
 may be either RGB or ALPHA and determines whether the RGB color
 vector or alpha scalar portion of the specified combiner stage is
 updated. The <variable> parameter may be one of VARIABLE_A_NV,
 VARIABLE_B_NV, VARIABLE_C_NV, or VARIABLE_D_NV and determines
 which respective variable of the specified combiner stage and
 combiner stage portion is updated.

 The <input>, <mapping>, and <componentUsage> parameters specify
 the assignment of a value for the input variable indicated by
 <stage>, <portion>, and <variable>. The <input> parameter may be
 one of the register names from table NV_register_combiners.1.

 The <componentUsage> parameter may be one of RGB, ALPHA, or BLUE.

 When the <portion> parameter is RGB, a <componentUsage> parameter
 of RGB indicates that the RGB portion of the indicated register
 should be assigned to the RGB portion of the combiner input variable,
 while an ALPHA <componentUsage> parameter indicates that the
 alpha portion of the indicated register should be replicated across
 the RGB portion of the combiner input variable.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 157

N
V

ID
IA

 P
roprietary.

 When the <portion> parameter is ALPHA, the <componentUsage>
 parameter of ALPHA indicates that the alpha portion of the indicated
 register should be assigned to the alpha portion of the combiner
 input variable, while a BLUE <componentUsage> parameter indicates
 that the blue component of the indicated register should be assigned
 to the alpha portion of the combiner input variable.

 When the <portion> parameter is ALPHA, a <componentUsage> parameter
 of RGB generates an INVALID_OPERATION error. When the <portion>
 parameter is RGB, a <componentUsage> parameter of BLUE generates
 an INVALID_OPERATION error.

 When the <portion> parameter is ALPHA, an <input> parameter of FOG
 generates an INVALID_OPERATION error. The alpha component of the
 fog register is only available in the final combiner.

 Before the value in the register named by <input> is assigned to the
 specified input variable, a range mapping is performed based on
 <mapping>. The mapping may be one of the tokens from the table
 NV_register_combiners.3.

 [Table NV_register_combiners.3]

 Mapping Name Mapping Function
 ----------------------- -------------------------------------
 UNSIGNED_IDENTITY_NV max(0.0, e)
 UNSIGNED_INVERT_NV 1.0 - min(max(e, 0.0), 1.0)
 EXPAND_NORMAL_NV 2.0 * max(0.0, e) - 1.0
 EXPAND_NEGATE_NV -2.0 * max(0.0, e) + 1.0
 HALF_BIAS_NORMAL_NV max(0.0, e) - 0.5
 HALF_BIAS_NEGATE_NV -max(0.0, e) + 0.5
 SIGNED_IDENTITY_NV e
 SIGNED_NEGATE_NV -e

 Based on the <mapping> parameter, the mapping function in the table
 above is evaluated for each element <e> of the input vector before
 assigning the result to the specified input variable. Note that
 the mapping for the RGB and alpha portion of each input variable
 is distinct.

 Each general combiner stage computes the following ten expressions
 based on the values assigned to the variables Argb, Brgb, Crgb,
 Drgb, Aa, Ba, Ca, and Da as determined by the combiner state set
 by CombinerInputNV.

 ["gcc" stands for general combiner computation.]

 gcc1rgb = [Argb[r]*Brgb[r], Argb[g]*Brgb[g], Argb[b]*Brgb[b]]

 gcc2rgb = [Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b],
 Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b],
 Argb[r]*Brgb[r] + Argb[g]*Brgb[g] + Argb[b]*Brgb[b]]

 gcc3rgb = [Crgb[r]*Drgb[r], Crgb[g]*Drgb[g], Crgb[b]*Drgb[b]]

NV_register_combiners NVIDIA OpenGL Extension Specifications

 158

N
V

ID
IA

 C
or

po
ra

tio
n,

 1
99

9.

 gcc4rgb = [Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b],
 Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b],
 Crgb[r]*Drgb[r] + Crgb[g]*Drgb[g] + Crgb[b]*Drgb[b]]

 gcc5rgb = gcc1rgb + gcc3rgb

 gcc6rgb = gcc1rgb or gcc3rgb [see below]

 gcc1a = Aa * Ba

 gcc2a = Ca * Da

 gcc3a = gcc1a + gcc3a

 gcc4a = gcc1a or gcc3a [see below]

 The computation of gcc6rgb and gcc4a involves a special "or"
 operation. This operation evaluates to the right-hand operand if the
 alpha component of the combiner's SPARE0_NV register is less than
 0.5; otherwise, the operation evaluates to the left-hand operand.

 The command

 CombinerOutputNV(GLenum stage,
 GLenum portion,
 GLenum abOutput,
 GLenum cdOutput,
 GLenum sumOutput,
 GLenum scale,
 GLenum bias,
 GLboolean abDotProduct,
 GLboolean cdDotProduct,
 GLboolean muxSum);

 controls the general combiner output operation including designating
 the register set locations where results of the general combiner's
 three computations are written. The <stage> and <portion>
 parameters take the same values as the respective parameters for
 CombinerInputNV.

 If the <portion> parameter is ALPHA, specifying a non-FALSE value
 for either of the parameters <abDotProduct> or <cdDotProduct>,
 generates an INVALID_VALUE error.

 If the <abDotProduct> or <cdDotProduct> parameter is non-FALSE,
 the value of the <sumOutput> parameter must be GL_DISCARD_NV;
 otherwise, generate an INVALID_OPERATION error.

 The <scale> parameter must be one of NONE, SCALE_BY_TWO_NV,
 SCALE_BY_FOUR_NV, or SCALE_BY_ONE_HALF_NV and specifies the
 value of the combiner stage's portion scale, either cscalergb or
 cscalea depending on the <portion> parameter, to 1.0, 2.0, 4.0,
 or 0.5, respectively.

 The <bias> parameter must be either NONE or
 BIAS_BY_NEGATIVE_ONE_HALF_NV and specifies the value of the
 combiner stage's portion bias, either cbiasrgb or cbiasa depending

NVIDIA OpenGL Extension Specifications NV_register_combiners

 159

N
V

ID
IA

 P
roprietary.

 on the <portion> parameter, to 0.0 or -0.5, respectively. If <scale>
 is either SCALE_BY_ONE_HALF_NV or SCALE_BY_FOUR_NV, a <bias> of
 BIAS_BY_NEGATIVE_ONE_HALF_NV generates an INVALID_OPERATION error.

 If the <abDotProduct> parameter is FALSE, then

 if <portion> is RGB, out1rgb = max(min(gcc1rgb + cbiasrgb) * cscalergb, 1), -1)
 if <portion> is ALPHA, out1a = max(min((gcc1a + cbiasa) * cscalea, 1), -1)

 otherwise <portion> must be RGB and

 out1rgb = max(min((gcc2rgb + cbiasrgb) * cscalergb, 1), -1)

 If the <cdDotProduct> parameter is FALSE, then

 if <portion> is RGB, out2rgb = max(min((gcc3rgb + cbiasrgb) * cscalergb, 1), -1)
 if <portion> is ALPHA, out2a = max(min((gcc2a + cbiasa) * cscalea, 1), -1)

 otherwise <portion> must be RGB so

 out2rgb = max(min((gcc4rgb + cbiasrgb) * cscalergb, 1), -1)

 If the <muxSum> parameter is FALSE, then

 if <portion> is RGB, out3rgb = max(min((gcc5rgb + cbiasrgb) * cscalergb, 1), -1)
 if <portion> is ALPHA, out3a = max(min((gcc3a + cbiasa) * cscalea, 1), -1)

 otherwise

 if <portion> is RGB, out3rgb = max(min((gcc6rgb + cbiasrgb) * cscalergb, 1), -1)
 if <portion> is ALPHA, out3a = max(min((gcc4a + cbiasa) * cscalea, 1), -1)

 out1rgb, out2rgb, and out3rgb are written to the RGB portion of
 combiner stage's registers named by <abOutput>, <cdOutput>, and
 <sumOutput> respectively. out1a, out2a, and out3a are written to
 the alpha portion of combiner stage's registers named by <abOutput>,
 <cdOutput>, and <sumOutput> respectively. The parameters <abOutput>,
 <cdOutput>, and <sumOutput> must be either DISCARD_NV or one of
 the register names from table NV_register_combiners.1 that has an output
 status of read/write. If an output is set to DISCARD_NV, that
 output is not written to any register. The error INVALID_OPERATION
 is generated if <abOutput>, <cdOutput>, and <sumOutput> do not all
 name unique register names (though multiple outputs to DISCARD_NV
 are legal).

 When the general combiner stage's register set is written based on
 the computed outputs, the updated register set is copied to the
 register set of the subsequent combiner stage in the combiner
 sequence. Copied undefined values are likewise undefined.
 The subsequent combiner stage following the last active general
 combiner stage, indicated by the general combiner stage's number
 being equal to ngc-1, in the sequence is the final combiner
 stage. In other words, the number of general combiner stages
 each fragment is transformed by is determined by the value of
 NUM_GENERAL_COMBINERS_NV.

 3.8.12.3 Final Combiner Stage Operation

 The final combiner stage operates differently from the general
 combiner stages. While a general combiner stage updates its register
 set and passes the register set to the next combiner stage, the final
 combiner outputs an RGBA color fcoc, the final combiner output color.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 160

 The final combiner stage is capable of applying the standard OpenGL
 color sum and fog operations, but has the configurability to be
 used for other purposes.

 The command

 FinalCombinerInputNV(GLenum variable,
 GLenum input,
 GLenum mapping,
 GLenum componentUsage);

 controls the assignment of all the final combiner input variables.
 The variables A, B, C, D, E, and F are RGB vectors. The variable
 G is an alpha scalar. The <variable> parameter may be one of
 VARIABLE_A_NV, VARIABLE_B_NV, VARIABLE_C_NV, VARIABLE_D_NV,
 VARIABLE_E_NV, VARIABLE_F_NV, and VARIABLE_G_NV, and determines
 which respective variable of the final combiner stage is updated.

 The <input>, <mapping>, and <componentUsage> parameters specify
 the assignment of a value for the input variable indicated by
 <variable>.

 The <input> parameter may be any one of the register names from table
 NV_register_combiners.1 or be one of two pseudo-register names, either
 E_TIMES_F_NV or SPARE0_PLUS_SECONDARY_COLOR_NV. The value of
 E_TIMES_F_NV is the product of the value of variable E times the
 value of variable F. The value of SPARE0_PLUS_SECONDARY_COLOR_NV
 is the value the SPARE0_NV register plus the value of the
 SECONDARY_COLOR_NV register. If csc, the color sum clamp, is
 non-FALSE, the value of SPARE0_PLUS_SECONDARY_COLOR_NV is
 first clamped to the range [0,1]. The alpha component of the
 E_TIMES_F_NV and SPARE0_PLUS_SECONDARY_COLOR_NV is always zero.

 When <variable> is one of VARIABLE_E_NV, VARIABLE_F_NV,
 or VARIABLE_G_NV and <input> is either E_TIMES_F_NV or
 SPARE0_PLUS_SECONDARY_COLOR_NV, generate an INVALID_OPERATION
 error. When <variable> is VARIABLE_A_NV and <input> is
 SPARE0_PLUS_SECONDARY_COLOR_NV, generate an INVALID_OPERATION
 error.

 The <componentUsage> parameter may be one of RGB or ALPHA.

 When the <variable> parameter is not VARIABLE_G_NV, a
 <componentUsage> parameter of RGB indicates that the RGB portion of
 the indicated register should be assigned to the RGB portion of the
 combiner input variable, while an ALPHA <componentUsage> parameter
 indicates that the alpha portion of the indicated register should
 be replicated across the RGB portion of the combiner input variable.

 When the <variable> parameter is VARIABLE_G_NV, a <componentUsage>
 parameter of ALPHA indicates that the alpha portion of the indicated
 register should be assigned to the alpha portion of the combiner
 input variable, while a <componentUsage> parameter of RGB generates
 an INVALID_OPERATION error.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 161

N
V

ID
IA

 P
roprietary.

 When the <input> parameter is either E_TIMES_F_NV or
 SPARE0_PLUS_SECONDARY_COLOR_NV and the <componentUsage>
 parameter is ALPHA, generate INVALID_OPERATION.

 Before the value in the register named by <input> is assigned to
 the specified input variable, a range mapping is performed based
 on <mapping>. The mapping may be either UNSIGNED_IDENTITY_NV
 or UNSIGNED_INVERT_NV and operates as specified in table
 NV_register_combiners.3.

 The final combiner stage computes the following expression based
 on the values assigned to the variables A, B, C, D, E, F, and G as
 determined by the combiner state set by FinalCombinerInputNV

 fcoc = [min(ab[r] + iac[r] + D[r], 1.0),
 min(ab[g] + iac[g] + D[g], 1.0),
 min(ab[b] + iac[b] + D[b], 1.0),
 G]

 where

 ab = [A[r]*B[r], A[g]*B[g], A[b]*B[b]]
 iac = [(1.0 -A [r])*C[r], (1.0 - A[g])*C[g], (1.0 - A[b])*C[b]]

 3.8.12.4 Required State

 The state required for the register combiners is a bit indicating
 whether register combiners are enabled or disabled, an integer
 indicating how many general combiners are active, a bit indicating
 whether or not the color sum clamp to 1 should be performed, two
 RGBA constant colors, <n> sets of general combiner stage state where
 <n> is the value of MAX_GENERAL_COMBINERS_NV, and the final
 combiner stage state. The per-stage general combiner state consists
 of the RGB input portion state and the alpha input portion state.
 Each portion (RGB and alpha) of the per-stage general combiner
 state consists of: four integers indicating the input register for
 the four variables A, B, C, and D; four integers to indicate each
 variable's range mapping; four bits to indicate whether to use the
 alpha component of the input for each variable; a bit indicating
 whether the AB dot product should be output; a bit indicating
 whether the CD dot product should be output; a bit indicating
 whether the sum or mux output should be output; two integers to
 maintain the output scale and bias enumerants; three integers to
 maintain the output register set names. The final combiner stage
 state consists of seven integers to indicate the input register
 for the seven variables A, B, C, D, E, F, and G; seven integers to
 indicate each variable's range mapping; and seven bits to indicate
 whether to use the alpha component of the input for each variable.

 The general combiner per-stage state is initialized as described
 in table NV_register_combiners.4.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 162

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 [Table NV_register_combiners.4]

 Component
 Portion Variable Input Usage Mapping
 ------- -------- ------------------ --------- ----------------------
 RGB A PRIMARY_COLOR_NV RGB UNSIGNED_IDENTITY_NV
 RGB B TEXTURE#_ARB RGB UNSIGNED_IDENTITY_NV
 RGB C ZERO RGB UNSIGNED_IDENTITY_NV
 RGB D ZERO RGB UNSIGNED_IDENTITY_NV
 alpha A PRIMARY_COLOR_NV ALPHA UNSIGNED_IDENTITY_NV
 alpha B TEXTURE#_ARB ALPHA UNSIGNED_IDENTITY_NV
 alpha C ZERO ALPHA UNSIGNED_IDENTITY_NV
 alpha D ZERO ALPHA UNSIGNED_IDENTITY_NV

 where # is the general combiner stage number.

 The final combiner stage state is initialized as described in table
 NV_register_combiners.5.

 [Table NV_register_combiners.5]

 Component
 Variable Input Usage Mapping
 -------- -------------------------------- --------- ----------------------
 A FOG ALPHA UNSIGNED_IDENTITY_NV
 B SPARE0_PLUS_SECONDARY_COLOR_NV RGB UNSIGNED_IDENTITY_NV
 C FOG RGB UNSIGNED_IDENTITY_NV
 D ZERO RGB UNSIGNED_IDENTITY_NV
 E ZERO RGB UNSIGNED_IDENTITY_NV
 F ZERO RGB UNSIGNED_IDENTITY_NV
 G SPARE0_NV ALPHA UNSIGNED_IDENTITY_NV"

 -- NEW Section 3.8.11 "Antialiasing Application"

 Insert the following paragraph BEFORE the section's first paragraph:

 "Register combiners are enabled or disabled using the generic Enable
 and Disable commands, respectively, with the symbolic constant
 REGISTER_COMBINERS_NV. If the register combiners are enabled (and not
 in color index mode), the fragment's color value is replaced with fcoc,
 the final combiner output color, computed in section 3.8.12; otherwise,
 the fragment's color value is the result of the fog application
 in section 3.10."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 -- Section 6.1.3 "Enumerated Queries"

 Change the first two sentences (page 182) to say:

NVIDIA OpenGL Extension Specifications NV_register_combiners

 163

N
V

ID
IA

 P
roprietary.

 "Other commands exist to obtain state variables that are identified by
 a category (clip plane, light, material, combiners, etc.) as well as
 a symbolic constant. These are"

 Add to the bottom of the list of function prototypes (page 183):

 void GetCombinerInputParameterfvNV(GLenum stage, GLenum portion,
 GLenum variable,
 GLenum pname, const GLfloat *params);
 void GetCombinerInputParameterivNV(GLenum stage, GLenum portion,
 GLenum variable,
 GLenum pname, const GLint *params);
 void GetCombinerOutputParameterfvNV(GLenum stage, GLenum portion,
 GLenum pname, const GLfloat *params);
 void GetCombinerOutputParameterivNV(GLenum stage, GLenum portion,
 GLenum pname, GLint *params);
 void GetFinalCombinerInputParameterfvNV(GLenum variable, GLenum pname,
 const GLfloat *params);
 void GetFinalCombinerInputParameterivNV(GLenum variable, GLenum pname,
 const GLfloat *params);

 Add the following paragraph to the end of the section (page 184):

 "The GetCombinerInputParameterfvNV,
 GetCombinerInputParameterivNV, GetCombinerOutputParameterfvNV,
 and GetCombinerOutputParameterivNV parameter <stage> may be one of
 COMBINER0_NV, COMBINER1_NV, and so on, indicating which general
 combiner stage to query. The GetCombinerInputParameterfvNV,
 GetCombinerInputParameterivNV, GetCombinerOutputParameterfvNV,
 and GetCombinerOutputParameterivNV parameter <portion> may be
 either RGB or ALPHA, indicating which portion of the general
 combiner stage to query. The GetCombinerInputParameterfvNV
 and GetCombinerInputParameterivNV parameter <variable> may
 be one of VARIABLE_A_NV, VARIABLE_B_NV, VARIABLE_C_NV,
 or VARIABLE_D_NV, indicating which variable of the general
 combiner stage to query. The GetFinalCombinerInputParameterfvNV
 and GetFinalCombinerInputParameterivNV parameter <variable> may be one
 of VARIABLE_A_NV, VARIABLE_B_NV, VARIABLE_C_NV, VARIABLE_D_NV,
 VARIABLE_E_NV, VARIABLE_F_NV, or VARIABLE_G_NV."

Additions to the GLX Specification

 Not done yet.

Errors

 INVALID_VALUE is generated when CombinerParameterfvNV
 or CombinerParameterivNV is called with <pname> set to
 NUM_GENERAL_COMBINERS and the value pointed to by <params>
 is less than one or greater or equal to the value of
 MAX_GENERAL_COMBINERS_NV.

 INVALID_OPERATION is generated when CombinerInputNV is called
 with a <componentUsage> parameter of RGB and a <portion> parameter
 of ALPHA.

NV_register_combiners NVIDIA OpenGL Extension Specifications

 164

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 INVALID_OPERATION is generated when CombinerInputNV is called
 with a <componentUsage> parameter of BLUE and a <portion> parameter
 of RGB.

 INVALID_OPERATION is generated When CombinerInputNV is called with
 a <portion> parameter of ALPHA and an <input> parameter of FOG.

 INVALID_VALUE is generated when CombinerOutputNV is called with
 a <portion> parameter of ALPHA, but a non-FALSE value for either
 of the parameters <abDotProduct> or <cdDotProduct>.

 INVALID_OPERATION is generated when CombinerOutputNV is called with
 a <scale> of either SCALE_BY_TWO_NV or SCALE_BY_FOUR_NV and a
 <bias> of BIAS_BY_NEGATIVE_ONE_HALF_NV.

 INVALID_OPERATION is generated when CombinerOutputNV is called such
 that <abOutput>, <cdOutput>, and <sumOutput> do not all name unique
 register names (though multiple outputs to DISCARD_NV are legal).

 INVALID_OPERATION is generated when FinalCombinerOutputNV
 is called where <variable> is one of VARIABLE_E_NV,
 VARIABLE_F_NV, or VARIABLE_G_NV and <input> is E_TIMES_F_NV
 or SPARE0_PLUS_SECONDARY_COLOR_NV.

 INVALID_OPERATION is generated when FinalCombinerOutputNV
 is called where <variable> is VARIABLE_A_NV and <input> is
 SPARE0_PLUS_SECONDARY_COLOR_NV.

 INVALID_OPERATION is generated when FinalCombinerInputNV is
 called with VARIABLE_G_NV for <variable> and RGB or BLUE for
 <componentUsage>.

 INVALID_OPERATION is generated when FinalCombinerInputNV is
 called where the <input> parameter is either E_TIMES_F_NV or
 SPARE0_PLUS_SECONDARY_COLOR_NV and the <componentUsage>
 parameter is ALPHA.

 INVALID_OPERATION is generated when CombinerOutputNV is called with
 either <abDotProduct> or <cdDotProduct> assigned non-FALSE and
 <sumOutput> is not GL_DISCARD_NV.

NVIDIA OpenGL Extension Specifications NV_register_combiners

 165

N
V

ID
IA

 P
roprietary.

New State

 -- (NEW table 6.29, after p217)

Get Value Type Get Command Initial Value Description Sec Attribute
--------- -------- -------------------------------- --------------------- ---------------- -------- ----------
REGISTER_COMBINERS_NV B IsEnabled False register 3.8.11
texture/enable
 combiners enable
NUM_GENERAL_COMBINERS_NV Z+ GetIntegerv 1 number of active 3.8.12.1 texture
 combiner stages
COLOR_SUM_CLAMP_NV B GetBooleanv True whether or not 3.8.12.1 texture
 SPARE0_PLUS_
 SECONDARY_
 COLOR_NV clamps
 combiner stages
CONSTANT_COLOR0_NV C GetFloatv 0,0,0,0 combiner constant 3.8.12.1 texture
 color zero
CONSTANT_COLOR1_NV C GetFloatv 0,0,0,0 combiner constant 3.8.12.1 texture
 color one
COMBINER_INPUT_NV Z8x#x2x4 GetCombinerInputParameter*NV see 3.8.12.4 combiner input 3.8.12.2 texture
 variables
COMBINER_COMPONENT_USAGE_NV Z3x#x2x4 GetCombinerInputParameter*NV see 3.8.12.4 use alpha for 3.8.12.2 texture
 combiner input
COMBINER_MAPPING_NV Z8x#x2x4 GetCombinerInputParameter*NV UNSIGNED_IDENTITY_NV complement 3.8.12.2 texture
 combiner input
COMBINER_AB_DOT_PRODUCT_NV Bx#x2 GetCombinerOutputParameter*NV False output AB dot 3.8.12.3 texture
 product
COMBINER_CD_DOT_PRODUCT_NV Bx#x2 GetCombinerOutputParameter*NV False output CD dot 3.8.12.3 texture
 product
COMBINER_MUX_SUM_NV Bx#x2 GetCombinerOutputParameter*NV False output mux sum 3.8.12.3 texture
COMBINER_SCALE_NV Z2x#x2 GetCombinerOutputParameter*NV NONE output scale 3.8.12.3 texture
COMBINER_BIAS_NV Z2x#x2 GetCombinerOutputParameter*NV NONE output bias 3.8.12.3 texture
COMBINER_AB_OUTPUT_NV Z7x#x2 GetCombinerOutputParameter*NV DISCARD_NV AB output 3.8.12.3 texture
 register
COMBINER_CD_OUTPUT_NV Z7x#x2 GetCombinerOutputParameter*NV DISCARD_NV CD output 3.8.12.3 texture
 register
COMBINER_SUM_OUTPUT_NV Z7x#x2 GetCombinerOutputParameter*NV SPARE0_NV sum output 3.8.12.3 texture
 register
COMBINER_INPUT_NV Z10x7 GetFinalCombinerInputParameter*NV see 3.8.12.4 final combiner 3.8.12.4 texture
 input
COMBINER_MAPPING_NV Z2x7 GetFinalCombinerInputParameter*NV UNSIGNED_IDENTITY_NV final combiner 3.8.12.4 texture
 input mapping
COMBINER_COMPONENT_USAGE_NV Z2x7 GetFinalCombinerInputParameter*NV see 3.8.12.4 use alpha for 3.8.12.4 texture
 final combiner
 input mapping

[where # is the value of MAX_GENERAL_COMBINERS_NV]

New Implementation Dependent State

(table 6.24, p214) add the following entry:

Get Value Type Get Command Minimum Value Description Sec Attribute
------------------------ ---- ----------- ------------- ---------------- ------ ---------
MAX_GENERAL_COMBINERS_NV Z+ GetIntegerv 2 Maximum num of 3.8.12 -
 general combiner
 stages

NVIDIA Implementation Details

 The effective range of the RGB portion of the final combiner should
 be be [0,4] if the color sum clamp is false. Excercising this
 range requires assigning SPARE0_PLUS_SECONDARY_COLOR_NV to the D
 variable and either B or C or both B and C. In practice this is a
 very unlikely configuration.

 However due to a bug in the GeForce 256 and Quadro hardware, values
 generated above 2 in the RGB portion of the final combiner will be
 computed incorrectly. Subsequent NVIDIA GPUs have fixed this bug.

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

 166

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

Name

 NV_texgen_emboss

Name Strings

 GL_NV_texgen_emboss

Notice

 Copyright NVIDIA Corporation, 1999.
 NVIDIA Proprietary.

Version

 August 17, 1999

Number

 ??

Dependencies

 ARB_multitexture.

 Written based on the wording of the OpenGL 1.2 specification and the
 ARB_multitexture extension.

Overview

 This extension provides a new texture coordinate generation mode
 suitable for multitexture-based embossing (or bump mapping) effects.

 Given two texture units, this extension generates the texture
 coordinates of a second texture unit (an odd-numbered texture unit)
 as a perturbation of a first texture unit (an even-numbered texture
 unit one less than the second texture unit). The perturbation is
 based on the normal, tangent, and light vectors. The normal vector
 is supplied by glNormal; the light vector is supplied as a direction
 vector to a specified OpenGL light's position; and the tanget
 vector is supplied by the second texture unit's current texture
 coordinate. The perturbation is also scaled by program-supplied
 scaling constants.

 If both texture units are bound to the same texture representing a
 height field, by subtracting the difference between the resulting two
 filtered texels, programs can achieve a per-pixel embossing effect.

Issues

 Can you do embossing on any texture unit?

 NO. Just odd numbered units. This meets a constraint of the
 proposed hardware implementation, and because embossing takes two
 texture units anyway, it shouldn't be a real limitation.

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

 167

N
V

ID
IA

 P
roprietary.

 Can you just enable one coordinate of a texture unit for embossing?

 Yes but NOT REALLY. The texture coordinate generation formula
 is specified such that only when ALL the coordinates are enabled
 and are using embossing, do you get the embossing computation.
 Otherwise, you get undefined values for texture coordinates enabled
 for texture coordinate generation and setup for embossing.

 Does the light specified have to be enabled for embossing to work?

 Yes, currently. But perhaps we could require implementations to
 enable a phantom light (the light colors would be black).

 Could the emboss constant just be the reciprocal of the width and
 height of the texture units texture if that's what the programmer
 will have it be most of the time?

 NO. Too much work and there may be reasons for the programmer to
 control this.

 OpenGL's base texture environment functionality isn't powerful enough
 to do the subtraction needed for embossing. Where would you get
 powerful enough texture environment functionality.

 Another extension. Try NV_register_combiners.

 What is the interpretation of CT?

 For the purposes of embossing, CT should be thought of as the
 vertex's tangent vector. This tangent vector indicates the direction
 on the "surface" where PCTs is not changing and PCTt is increasing.

 Are the CT and PCT variables the user-supplied current texture
 coordinates?

 YES. Except when the texture unit's texture coordinate evaluator
 is enabled, then CT and PCT use the respective evaluated texture
 coordinates.

 This extension specification's language "Denote as CT the texture
 unit's current texture coordinates" and "Denote as PCT the previous
 texture unit's current texture coordinates" refers to the "current
 texture coordinates" OpenGL state which is the state specified
 via glTexCoord. Plus the exception for evaluators.

 To be explicit, PCT is NOT the result of texgen or the texture
 matrix. Likewise, CT is NOT the result of texgen or the
 texture matrix. PCT and CT are the respective texture unit's
 evaluated texture coordinate if the vertex is evaluated with
 texture coordinate evaluation enabled, otherwise if the vertex is
 generated via vertex arrays with the respective texture coordinate
 array enabled, the texture coordinate from the texture coordinate
 array, otherwise the respective current texture coordinate is used.

New Procedures and Functions

 None

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

 168

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

New Tokens

 Accepted by the <param> parameters of TexGend, TexGenf, and TexGeni
 when <pname> parameter is TEXTURE_GEN_MODE:

 EMBOSS_MAP_NV 0x855f

 When the <pname> parameter of TexGendv, TexGenfv, and TexGeniv is
 TEXTURE_GEN_MODE, then the array <params> may also contain
 EMBOSS_MAP_NV.

 Accepted by the <pname> parameters of GetTexGendv, GetTexGenfv,
 GetTexGeniv, TexGend, TexGendv, TexGenf, TexGenfv, TexGeni, and
 TexGeniv:

 EMBOSS_LIGHT_NV 0x855d
 EMBOSS_CONSTANT_NV 0x855e

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

 -- Section 2.10.4 "Generating Texture Coordinates"

 Change the last sentence in the 1st paragraph to:

 "If <pname> is TEXTURE_GEN_MODE, then either <params> points to
 or <param> is an integer that is one of the symbolic constants
 OBJECT_LINEAR, EYE_LINEAR, SPHERE_MAP, or EMBOSS_MAP_NV."

 Add these paragraphs after the 4th paragraph:

 "When used with a suitable texture, suitable explicit texture
 coordinates, a suitable (extended) texture environment,
 suitable lighting parameters, and suitable embossing parameters,
 calling TexGen with TEXTURE_GEN_MODE indicating EMBOSS_MAP_NV
 can simulate the lighting effect of embossing on a polygon.
 The error INVALID_ENUM occurs when the active texture unit has an
 even number.

 The emboss constant and emboss light parameters for controlling
 the EMBOSS_MAP_NV mode are specified by calling TexGen with pname
 set to EMBOSS_CONSTANT_NV and EMBOSS_LIGHT_NV respectively.

 When pname is EMBOSS_CONSTANT_NV, param or what params points
 to is a scalar value. An error INVALID_ENUM occurs if pname is
 EMBOSS_CONSTANT_NV and coord is R or Q. An error INVALID_ENUM
 also occurs if pname is EMBOSS_CONSTANT_NV and the active texture
 unit number is even.

 When pname is EMBOSS_LIGHT_NV, param or what params points to is
 a symbolic constant of the form LIGHTi, indicating that light i
 is to have the specified parameter set. An error INVALID_ENUM
 occurs if pname is EMBOSS_LIGHT_NV and coord is R or Q. An error
 INVALID_ENUM occurs if pname is EMBOSS_LIGHT_NV and the active
 texture unit number is even. An error INVALID_ENUM occurs if
 pname is EMBOSS_LIGHT_NV and the value i for LIGHTi is negative
 or is greater than or equal to the value of MAX_LIGHTS.

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

 169

N
V

ID
IA

 P
roprietary.

 If TEXTURE_GEN_MODE indicates EMBOSS_MAP_NV, the generation function
 for the coordinates S, T, R, and Q is computed as follows.

 Denote as L the light direction vector from the vertex's eye
 position to the position of the light specified by the coordinate's
 EMBOSS_LIGHT_NV state (the direction vector is computed as described
 in Section 3.13.1).

 Denote as N the current normal after transformation to eye
 coordinates.

 Denote as CT the texture unit's current texture coordinates
 transformed to eye coordinates by normal transformation (as
 described in Section 3.10.3) and normalized.

 However, if the vertex is evaluated (as described in Section 5.1)
 and the texture unit's texture coordinate map is enabled, use the
 texture unit's evaluated texture coordinate to compute CT.

 Denote as B the cross product of N and the <s,t,r> vector of CT.

 Bx = Ny*CTr - CTt*Nz
 By = Nz*CTs - CTr*Nx
 Bz = Nx*CTt - CTs*Ny

 Denote as BN the normalized version of the vector B.

 BNx = Bx / sqrt(Bx*Bx + By*By + Bz*Bz);
 BNy = By / sqrt(Bx*Bx + By*By + Bz*Bz);
 BNz = Bz / sqrt(Bx*Bx + By*By + Bz*Bz);

 Denote as T the cross product of B and N.

 Tx = BNy*Nz - Ny*BNz
 Ty = BNz*Nx - Nz*BNx
 Tz = BNx*Ny - Nx*BNy

 Observe that BN and T are orthonormal.

 Denote as PCT the previous texture unit's current texture
 coordinates. If the number of the texture unit for the texture
 coordinates being generated is n, then the previous texture unit
 is texture unit number n-1. Note that n is restricted to be odd.

 However, if the vertex is evaluated (as described in Section 5.1)
 and the previous texture unit's texture coordinate map is enabled,
 use the previous texture unit's evaluated texture coordinate to
 compute PCT.

 Denote Ks as the S coordinate's EMBOSS_CONSTANT_NV state. Denote Kt
 as the T coordinate's EMBOSS_CONSTANT_NV state. These constants
 should typically be set to the reciprocal of the width and height
 respectively of the texture map used for embossing.

NV_texgen_emboss NVIDIA OpenGL Extension Specifications

 170

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 Denote E as follows:

 Es = PCTs + Ks * (Lx*BNx + Ly*BNy + Lz*BNz) * PCTq
 Et = PCTt - Kt * (Lx*Tx + Ly*Ty + Lz*Tz) * PCTq
 Er = PCTr
 Eq = PCTq

 Then the value assigned to an s, t, r, and q coordinates are Es,
 Et, Er, and Eq respectively. However, for this assignment to
 occur, the following three conditions must be met. First, all the
 texture coordinate generation modes of all the texture coordinates
 (S, T, R, and Q) of the texture unit must be set to EMBOSS_MAP_NV.
 Second, all the texture coordinate generation modes of the texture
 unit must be enabled. Third, the EMBOSS_LIGHT_NV parameters of
 coordinates S and T must be identical and the light and lighting
 must be enabled. If these conditions are not met, the values of
 all coordinates in the texture unit with the EMBOSS_MAP_NV mode
 are undefined."

 The last paragraph's first sentence should be changed to:

 "The state required for texture coordinate generation comprises
 a five-valued integer for each coordinate indicating coordinate
 generation mode, and a bit for each coordinate to indicate whether
 texture coordinate generation is enabled or disabled. In addition,
 four coefficients are required for the four coordinates for each
 of EYE_LINEAR and OBJECT_LINEAR; also, an emboss constant and
 emboss light are required for each of the four coordinates....
 The initial values for emboss constants and emboss lights are 1.0
 and LIGHT0 respectively."

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

 None

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated when TexGen is called with a <pname>
 of TEXTURE_GEN_MODE, a <param> value or value of what <params>
 points to of EMBOSS_MAP_NV, and the active texture unit is even.

NVIDIA OpenGL Extension Specifications NV_texgen_emboss

 171

N
V

ID
IA

 P
roprietary.

 INVALID_ENUM is generated when TexGen is called with a <pname>
 of EMBOSS_CONSTANT_NV and the active texture unit is even.

 INVALID_ENUM is generated when TexGen is called with a <pname>
 of EMBOSS_LIGHT_NV and the active texture unit is even.

 INVALID_ENUM is generated when TexGen is called with a <coord>
 of R or Q when <pname> indicates EMBOSS_CONSTANT_NV.

 INVALID_ENUM is generated when TexGen is called with a <coord>
 of R or Q when <pname> indicates EMBOSS_LIGHT_NV.

 INVALID_ENUM is generated when TexGen is called with a <pname>
 of EMBOSS_LIGHT_NV and the value of i for the parameter LIGHTi is
 negative or is greater than or equal to the value of MAX_LIGHTS.

New State

(table 6.14, p204) change the entry for TEXTURE_GEN_MODE to:

Get Value Type Get Command Initial Value Description Sec Attribute
------------------ ---- ----------- ------------- ----------- ------ ---------
TEXTURE_GEN_MODE 4xZ5 GetTexGeniv EYE_LINEAR Function used for 2.10.4 texture
 texgen (for s,t,r,
 and q)
EMBOSS_CONSTANT_NV 4xR GetTexGenfv 1.0 Scaling constant 2.10.4 texture
 for emboss texgen
EMBOSS_LIGHT_NV 4xZ8* GetTexGeniv LIGHT0 Light used for 2.10.4 texture
 embossing.

When ARB_multitexture is supported, the Type column is per-texture unit.

(the TEXTURE_GEN_MODE type changes from 4xZ3 to 4xZ5)

New Implementation State

 None

NV_texgen_reflection NVIDIA OpenGL Extension Specifications

 172

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

Name

 NV_texgen_reflection

Name Strings

 GL_NV_texgen_reflection

Notice

 Copyright NVIDIA Corporation, 1999.
 NVIDIA Proprietary.

Version

 August 24, 1999

Number

 179

Dependencies

 Written based on the wording of the OpenGL 1.2 specification but
 not dependent on it.

Overview

 This extension provides two new texture coordinate generation modes
 that are useful texture-based lighting and environment mapping.
 The reflection map mode generates texture coordinates (s,t,r)
 matching the vertex's eye-space reflection vector. The reflection
 map mode is useful for environment mapping without the singularity
 inherent in sphere mapping. The normal map mode generates texture
 coordinates (s,t,r) matching the vertex's transformed eye-space
 normal. The normal map mode is useful for sophisticated cube map
 texturing-based diffuse lighting models.

Issues

 Should we place the normal/reflection vector in the (s,t,r) texture
 coordinates or (s,t,q) coordinates?

 RESOLUTION: (s,t,r). Even if the proposed hardware uses "q" for
 the third component, the API should claim to support generation of
 (s,t,r) and let the texture matrix (through a concatenation with
 the user-supplied texture matrix) move "r" into "q".

 Should you be able to have some texture coordinates computing
 REFLECTION_MAP_NV and others not? Same question with NORMAL_MAP_NV.

 RESOLUTION: YES. This is the way that SPHERE_MAP works. It is
 not clear that this would ever be useful though.

 Should something special be said about the handling of the q
 texture coordinate for this spec?

NVIDIA OpenGL Extension Specifications NV_texgen_reflection

 173

N
V

ID
IA

 P
roprietary.

 RESOLUTION: NO. But the following paragraph is useful for
 implementors concerned about the handling of q.

 The REFLECTION_MAP_NV and NORMAL_MAP_NV modes are intended to supply
 reflection and normal vectors for cube map texturing hardware.
 When these modes are used for cube map texturing, the generated
 texture coordinates can be thought of as an reflection vector.
 The value of the q texture coordinate then simply scales the
 vector but does not change its direction. Because only the vector
 direction (not the vector magnitude) matters for cube map texturing,
 implementations are free to leave q undefined when any of the s,
 t, or r texture coordinates are generated using REFLECTION_MAP_NV
 or NORMAL_MAP_NV.

New Procedures and Functions

 None

New Tokens

 Accepted by the <param> parameters of TexGend, TexGenf, and TexGeni
 when <pname> parameter is TEXTURE_GEN_MODE:

 NORMAL_MAP_NV 0x8511
 REFLECTION_MAP_NV 0x8512

 When the <pname> parameter of TexGendv, TexGenfv, and TexGeniv is
 TEXTURE_GEN_MODE, then the array <params> may also contain
 NORMAL_MAP_NV or REFLECTION_MAP_NV.

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

 -- Section 2.10.4 "Generating Texture Coordinates"

 Change the last sentence in the 1st paragraph to:

 "If <pname> is TEXTURE_GEN_MODE, then either <params> points to
 or <param> is an integer that is one of the symbolic constants
 OBJECT_LINEAR, EYE_LINEAR, SPHERE_MAP, REFLECTION_MAP_NV, or
 NORMAL_MAP_NV."

 Add these paragraphs after the 4th paragraph:

 "If TEXTURE_GEN_MODE indicates REFLECTION_MAP_NV, compute the
 reflection vector r as described for the SPHERE_MAP mode. Then the
 value assigned to an s coordinate (the first TexGen argument value
 is S) is s = rx; the value assigned to a t coordinate is t = ry;
 and the value assigned to a r coordinate is r = rz. Calling TexGen
 with a <coord> of Q when <pname> indicates REFLECTION_MAP_NV
 generates the error INVALID_ENUM.

 If TEXTURE_GEN_MODE indicates NORMAL_MAP_NV, compute the normal
 vector n' as described in section 2.10.3. Then the value assigned
 to an s coordinate (the first TexGen argument value is S) is s =
 nfx; the value assigned to a t coordinate is t = nfy; and the
 value assigned to a r coordinate is r = nfz. (The values nfx, nfy,

NV_texgen_reflection NVIDIA OpenGL Extension Specifications

 174

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 and nfz are the components of nf.) Calling TexGen with a <coord>
 of Q when <pname> indicates REFLECTION_MAP_NV generates the error
 INVALID_ENUM.

 The last paragraph's first sentence should be changed to:

 "The state required for texture coordinate generation comprises a
 five-valued integer for each coordinate indicating coordinate
 generation mode, ..."

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

 None

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

Errors

 INVALID_ENUM is generated when TexGen is called with a <coord> of Q
 when <pname> indicates REFLECTION_MAP_NV or NORMAL_MAP_NV.

New State

(table 6.14, p204) change the entry for TEXTURE_GEN_MODE to:

Get Value Type Get Command Initial Value Description Sec Attribute
---------------- ---- ----------- ------------- ----------- ------ ---------
TEXTURE_GEN_MODE 4xZ5 GetTexGeniv EYE_LINEAR Function used for 2.10.4 texture
 texgen (for s,t,r,
 and q)

(the type changes from 4xZ3 to 4xZ5)

New Implementation State

 None

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

 175

N
V

ID
IA

 P
roprietary.

Name

 NV_texture_env_combine4

Name Strings

 GL_NV_texture_env_combine4

Notice

 Copyright NVIDIA Corporation, 1999.
 NVIDIA Proprietary.

Version

 $Date: 1999/06/21 13:54:17 $ $Revision: 1.2 $

Number

 ???

Dependencies

 EXT_texture_env_combine is required and is modified by this extension
 ARB_multitexture affects the definition of this extension

Overview

 New texture environment function COMBINE4_NV allows programmable
 texture combiner operations, including

 ADD Arg0 * Arg1 + Arg2 * Arg3
 ADD_SIGNED_EXT Arg0 * Arg1 + Arg2 * Arg3 - 0.5

 where Arg0, Arg1, Arg2 and Arg3 are derived from

 ZERO the value 0
 PRIMARY_COLOR_EXT primary color of incoming fragment
 TEXTURE texture color of corresponding texture unit
 CONSTANT_EXT texture environment constant color
 PREVIOUS_EXT result of previous texture environment; on
 texture unit 0, this maps to PRIMARY_COLOR_EXT
 TEXTURE<n>_ARB texture color of the <n>th texture unit

 In addition, the result may be scaled by 1.0, 2.0 or 4.0.

Issues

 None

New Procedures and Functions

 None

NV_texture_env_combine4 NVIDIA OpenGL Extension Specifications

 176

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

New Tokens

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnviv when the <pname> parameter value is TEXTURE_ENV_MODE

 COMBINE4_NV 0x8503

 Accepted by the <pname> parameter of GetTexEnvfv, GetTexEnviv,
 TexEnvf, TexEnvi, TexEnvfv, and TexEnviv when the <target> parameter
 value is TEXTURE_ENV

 SOURCE3_RGB_NV 0x8583
 SOURCE3_ALPHA_NV 0x858B
 OPERAND3_RGB_NV 0x8593
 OPERAND3_ALPHA_NV 0x859B

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnviv when the <pname> parameter value is SOURCE0_RGB_EXT,
 SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE3_RGB_NV, SOURCE0_ALPHA_EXT,
 SOURCE1_ALPHA_EXT, SOURCE2_ALPHA_EXT, or SOURCE3_ALPHA_NV

 ZERO
 TEXTURE<n>_ARB

 where <n> is in the range 0 to NUMBER_OF_TEXTURE_UNITS_ARB-1.

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnviv when the <pname> parameter value is OPERAND0_RGB_EXT,
 OPERAND1_RGB_EXT, OPERAND2_RGB_EXT or OPERAND3_RGB_NV

 SRC_COLOR
 ONE_MINUS_SRC_COLOR
 SRC_ALPHA
 ONE_MINUS_SRC_ALPHA

 Accepted by the <params> parameter of TexEnvf, TexEnvi, TexEnvfv, and
 TexEnviv when the <pname> parameter value is OPERAND0_ALPHA_EXT,
 OPERAND1_ALPHA_EXT, OPERAND2_ALPHA_EXT, or OPERAND3_ALPHA_NV

 SRC_ALPHA
 ONE_MINUS_SRC_ALPHA

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

 Added to subsection 3.8.9, before the paragraph describing the state
 requirements:

 If the value of TEXTURE_ENV_MODE is COMBINE4_NV, the form of the
 texture function depends on the values of COMBINE_RGB_EXT and
 COMBINE_ALPHA_EXT, according to table 3.21. The RGB and ALPHA results
 of the texture function are then multiplied by the values of
 RGB_SCALE_EXT and ALPHA_SCALE, respectively. The results are clamped
 to [0,1]. If the value of COMBINE_RGB_EXT or COMBINE_ALPHA_EXT is not

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

 177

N
V

ID
IA

 P
roprietary.

 one of the listed values, the result is undefined.

 COMBINE_RGB_EXT or
 COMBINE_ALPHA_EXT Texture Function
 ------------------ ----------------
 ADD Arg0 * Arg1 + Arg2 * Arg3
 ADD_SIGNED_EXT Arg0 * Arg1 + Arg2 * Arg3 - 0.5

 Table 3.21: COMBINE4_NV texture functions

 The arguments Arg0, Arg1, Arg2 and Arg3 are determined by the values
 of SOURCE<n>_RGB_EXT, SOURCE<n>_ALPHA_EXT, OPERAND<n>_RGB_EXT and
 OPERAND<n>_ALPHA_EXT. In the following two tables, Ct and At are the
 filtered texture RGB and alpha values; Cc and Ac are the texture
 environment RGB and alpha values; Cf and Af are the RGB and alpha of
 the primary color of the incoming fragment; and Cp and Ap are the RGB
 and alpha values resulting from the previous texture environment. On
 texture environment 0, Cp and Ap are identical to Cf and Af,
 respectively. Ct<n> and At<n> are the filtered texture RGB and alpha
 values from the texture bound to the <n>th texture unit. If the <n>th
 texture unit is disabled, the value of each component is 1. The
 relationship is described in tables 3.22 and 3.23.

 SOURCE<n>_RGB_EXT OPERAND<n>_RGB_EXT Argument
 ----------------- -------------- --------
 ZERO SRC_COLOR 0
 ONE_MINUS_SRC_COLOR 1
 SRC_ALPHA 0
 ONE_MINUS_SRC_ALPHA 1
 TEXTURE SRC_COLOR Ct
 ONE_MINUS_SRC_COLOR (1-Ct)
 SRC_ALPHA At
 ONE_MINUS_SRC_ALPHA (1-At)
 CONSTANT_EXT SRC_COLOR Cc
 ONE_MINUS_SRC_COLOR (1-Cc)
 SRC_ALPHA Ac
 ONE_MINUS_SRC_ALPHA (1-Ac)
 PRIMARY_COLOR_EXT SRC_COLOR Cf
 ONE_MINUS_SRC_COLOR (1-Cf)
 SRC_ALPHA Af
 ONE_MINUS_SRC_ALPHA (1-Af)
 PREVIOUS_EXT SRC_COLOR Cp
 ONE_MINUS_SRC_COLOR (1-Cp)
 SRC_ALPHA Ap
 ONE_MINUS_SRC_ALPHA (1-Ap)
 TEXTURE<n>_ARB SRC_COLOR Ct<n>
 ONE_MINUS_SRC_COLOR (1-Ct<n>)
 SRC_ALPHA At<n>
 ONE_MINUS_SRC_ALPHA (1-At<n>)

 Table 3.22: Arguments for COMBINE_RGB_EXT functions

NV_texture_env_combine4 NVIDIA OpenGL Extension Specifications

 178

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 SOURCE<n>_ALPHA_EXT OPERAND<n>_ALPHA_EXT Argument
 ------------------- -------------- --------
 ZERO SRC_ALPHA 0
 ONE_MINUS_SRC_ALPHA 1
 TEXTURE SRC_ALPHA At
 ONE_MINUS_SRC_ALPHA (1-At)
 CONSTANT_EXT SRC_ALPHA Ac
 ONE_MINUS_SRC_ALPHA (1-Ac)
 PRIMARY_COLOR_EXT SRC_ALPHA Af
 ONE_MINUS_SRC_ALPHA (1-Af)
 PREVIOUS_EXT SRC_ALPHA Ap
 ONE_MINUS_SRC_ALPHA (1-Ap)
 TEXTURE<n>_ARB SRC_ALPHA At<n>
 ONE_MINUS_SRC_ALPHA (1-At<n>)

 Table 3.23: Arguments for COMBINE_ALPHA_EXT functions

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to Chapter 6 of the GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 INVALID_ENUM is generated if <params> value for SOURCE0_RGB_EXT,
 SOURCE1_RGB_EXT, SOURCE2_RGB_EXT, SOURCE3_RGB_NV, SOURCE0_ALPHA_EXT,
 SOURCE1_ALPHA_EXT, SOURCE2_ALPHA_EXT or SOURCE3_ALPHA_NV is not one of
 ZERO, TEXTURE, CONSTANT_EXT, PRIMARY_COLOR_EXT, PREVIOUS_EXT or
 TEXTURE<n>_ARB, where <n> is in the range 0 to
 NUMBER_OF_TEXTURE_UNITS_ARB-1.

 INVALID_ENUM is generated if <params> value for OPERAND0_RGB_EXT,
 OPERAND1_RGB_EXT, OPERAND2_RGB_EXT or OPERAND3_RGB_NV is not one of
 SRC_COLOR, ONE_MINUS_SRC_COLOR, SRC_ALPHA or ONE_MINUS_SRC_ALPHA.

 INVALID_ENUM is generated if <params> value for OPERAND0_ALPHA_EXT
 OPERAND1_ALPHA_EXT, OPERAND2_ALPHA_EXT, or OPERAND3_ALPHA_NV is not
 one of SRC_ALPHA or ONE_MINUS_SRC_ALPHA.

NVIDIA OpenGL Extension Specifications NV_texture_env_combine4

 179

N
V

ID
IA

 P
roprietary.

Modifications to EXT_texture_env_combine

 This extension relaxes the restrictions on SOURCE<n>_RGB_EXT,
 SOURCE<n>_ALPHA_EXT, OPERAND<n>_RGB_EXT and OPERAND<n>_ALPHA_EXT for
 use with EXT_texture_env_combine. All params specified by Table 3.22
 and Table 3.23 are valid.

Dependencies on ARB_multitexture

 If ARB_multitexture is not implemented, all references to
 TEXTURE<n>_ARB and NUMBER_OF_TEXTURE_UNITS_ARB are deleted.

New State

 Get Value Get Command Type Initial Value Attribute
 --------- ----------- ---- ------------- ---------
 SOURCE3_RGB_NV GetTexEnviv n x Z5+n ZERO texture
 SOURCE3_ALPHA_NV GetTexEnviv n x Z5+n ZERO texture
 OPERAND3_RGB_NV GetTexEnviv n x Z2 ONE_MINUS_SRC_COLOR texture
 OPERAND3_ALPHA_NV GetTexEnviv n x Z2 ONE_MINUS_SRC_ALPHA texture

New Implementation Dependent State

 None

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 180

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

Name

 NV_vertex_array_range

Name Strings

 GL_NV_vertex_array_range

Notice

 Copyright NVIDIA Corporation, 1999.
 NVIDIA Proprietary.

Version

 August 19, 1998

Number

 ??

Dependencies

 None

Overview

 The goal of this extension is to permit extremely high vertex
 processing rates via OpenGL vertex arrays even when the CPU lacks
 the necessary data movement bandwidth to keep up with the rate
 at which the vertex engine can consume vertices. CPUs can keep
 up if they can just pass vertex indices to the hardware and
 let the hardware "pull" the actual vertex data via Direct Memory
 Access (DMA). Unfortunately, the current OpenGL 1.1 vertex array
 functionality has semantic constraints that make such an approach
 hard. Hence, the vertex array range extension.

 This extension provides a mechanism for deferring the pulling of
 vertex array elements to facilitate DMAed pulling of vertices for
 fast, efficient vertex array transfers. The OpenGL client need only
 pass vertex indices to the hardware which can DMA the actual index's
 vertex data directly out of the client address space.

 The OpenGL 1.1 vertex array functionality specifies a fairly strict
 coherency model for when OpenGL extracts vertex data from a vertex
 array and when the application can update the in memory
 vertex array data. The OpenGL 1.1 specification says "Changes
 made to array data between the execution of Begin and the
 corresponding execution of End may affect calls to ArrayElement
 that are made within the same Begin/End period in non-sequential
 ways. That is, a call to ArrayElement that precedes a change to
 array data may access the changed data, and a call that follows
 a change to array data may access the original data."

 This means that by the time End returns (and DrawArrays and
 DrawElements return since they have implicit Ends), the actual vertex

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 181

N
V

ID
IA

 P
roprietary.

 array data must be transferred to OpenGL. This strict coherency model
 prevents us from simply passing vertex element indices to the hardware
 and having the hardware "pull" the vertex data out (which is often
 long after the End for the primitive has returned to the application).

 Relaxing this coherency model and bounding the range from which
 vertex array data can be pulled is key to making OpenGL vertex
 array transfers faster and more efficient.

 The first task of the vertex array range extension is to relax
 the coherency model so that hardware can indeed "pull" vertex
 data from the OpenGL client's address space long after the application
 has completed sending the geometry primitives requiring the vertex
 data.

 The second problem with the OpenGL 1.1 vertex array functionality is
 the lack of any guidance from the API about what region of memory
 vertices can be pulled from. There is no size limit for OpenGL 1.1
 vertex arrays. Any vertex index that points to valid data in all
 enabled arrays is fair game. This makes it hard for a vertex DMA
 engine to pull vertices since they can be potentially pulled from
 anywhere in the OpenGL client address space.

 The vertex array range extension specifies a range of the OpenGL
 client's address space where vertices can be pulled. Vertex indices
 that access any array elements outside the vertex array range
 are specified to be undefined. This permits hardware to DMA from
 finite regions of OpenGL client address space, making DMA engine
 implementation tractable.

 The extension is specified such that an (error free) OpenGL client
 using the vertex array range functionality could no-op its vertex
 array range commands and operate equivalently to using (if slower
 than) the vertex array range functionality.

 Because different memory types (local graphics memory, AGP memory)
 have different DMA bandwidths and caching behavior, this extension
 includes a window system dependent memory allocator to allocate
 cleanly the most appropriate memory for constructing a vertex array
 range. The memory allocator provided allows the application to
 tradeoff the desired CPU read frequency, CPU write frequency, and
 memory priority while still leaving it up to OpenGL implementation
 the exact memory type to be allocated.

Issues

 How does this extension interact with the compiled_vertex_array
 extension?

 I think they should be independent and not interfere with
 each other. In practice, if you use NV_vertex_array_range,
 you can surpass the performance of compiled_vertex_array

 Should some explanation be added about what happens when an OpenGL
 application updates its address space in regions overlapping with
 the currently configured vertex array range?

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 182

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 RESOLUTION: I think the right thing is to say that you get
 non-sequential results. In practice, you'll be using an old
 context DMA pointing to the old pages.

 If the application change's its address space within the
 vertex array range, the application should call
 glVertexArrayRangeNV again. That will re-make a new vertex
 array range context DMA for the application's current address
 space.

 If we are falling back to software transformation, do we still need to
 abide by leaving "undefined" vertices outside the vertex array range?
 For example, pointers that are not 32-bit aligned would likely cause
 a fall back.

 RESOLUTION: No. The fact that vertex is "undefined" means we
 can do anything we want (as long as we send a vertex and do not
 crash) so it is perfectly fine for the software puller to
 grab vertex information not available to the hardware puller.

 Should we give a programmer a sense of how big a vertex array
 range they can specify?

 RESOLUTION: No. Just document it if there are limitations.
 Probably very hardware and operating system dependent.

 Is it clear enough that language about ArrayElement
 also applies to DrawArrays and DrawElements?

 Maybe not, but OpenGL 1.1 spec is clear that DrawArrays and
 DrawElements are defined in terms of ArrayElement.

 Should glFlush be the same as glVertexArrayRangeFlush?

 RESOLUTION: No. A glFlush is cheaper than a glVertexArrayRangeFlush
 though a glVertexArrayRangeFlushNV should do a flush.

 If any the data for any enabled array for a given array element index
 falls outside of the vertex array range, what happens?

 RESOLUTION: An undefined vertex is generated.

 What error is generated in this case?

 I don't know yet. We should make sure the hardware really does
 let us know when vertices are undefined.

 Note that this is a little weird for OpenGL since most errors
 in OpenGL result in the command being ignored. Not in this
 case though.

 Should this extension support an interface for allocating video
 and AGP memory?

 RESOLUTION: YES. It seems like we should be able to leave
 the task of memory allocation to DirectDraw, but DirectDraw's
 asynchronous unmapping behavior and having to hold locks to

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 183

N
V

ID
IA

 P
roprietary.

 update DirectDraw surfaces makes that mechanism to cumbersome.

 Plus the API is a lot easier if we do it ourselves.

 How do we decide what type of memory to allocate for the application?

 RESOLUTION: Usage hints. The application rates the read
 frequency (how often will they read the memory), the write
 frequency (how often will they write the memory), and the
 priority (how important is this memory relative to other
 uses for the memory such as texturing) on a scale of 1.0
 to 0.0. Using these hints and the size of the memory requsted,
 the OpenGL implementation decides where to allocate the memory.

 We try to not directly expose particular types of memory
 (AGP, local memory, cached/uncached, etc) so future memory
 types can be supported by merely updating the OpenGL
 implementation.

 Should the memory allocator functionality be available be a part
 of the GL or window system dependent (GLX or WGL) APIs?

 RESOLUTION: The window system dependent API.

 The memory allocator should be considered a window system/
 operating system dependent operation. This also permits
 memory to be allocated when no OpenGL rendering contexts
 exist yet.

New Procedures and Functions

 void VertexArrayRangeNV(sizei length, void *pointer)
 void FlushVertexArrayRangeNV(void)

New Tokens

 Accepted by the <cap> parameter of EnableClientState,
 DisableClientState, and IsEnabled:

 VERTEX_ARRAY_RANGE_NV 0x851d

 Accepted by the <pname> parameter of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

 VERTEX_ARRAY_RANGE_LENGTH_NV 0x851e
 VERTEX_ARRAY_RANGE_VALID_NV 0x851f
 MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV 0x8520

 Accepted by the <pname> parameter of GetPointerv:

 VERTEX_ARRAY_RANGE_POINTER_NV 0x8521

Additions to Chapter 2 of the 1.1 Specification (OpenGL Operation)

 After the discussion of vertex arrays (Section 2.8) add a
 description of the vertex array range:

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 184

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 "The command

 void VertexArrayRangeNV(sizei length, void *pointer)

 specifies the current vertex array range. When the vertex array
 range is enabled and valid, vertex array vertex transfers from within
 the vertex array range are potentially faster. The vertex array
 range is a contiguous region of (virtual) address space for placing
 vertex arrays. The "pointer" parameter is a pointer to the base of
 the vertex array range. The "length" pointer is the length of the
 vertex array range in basic machine units (typically unsigned bytes).

 The vertex array range address space region extends from "pointer"
 to "pointer + length - 1" inclusive. When specified and enabled,
 vertex array vertex transfers from within the vertex array range
 are potentially faster.

 There is some system burden associated with establishing a vertex
 array range (typically, the memory range must be locked down).
 If either the vertex array range pointer or size is set to zero,
 the previously established vertex array range is released (typically,
 unlocking the memory).

 The vertex array range may not be established for operating system
 dependent reasons, and therefore, not valid. Reasons that a vertex
 array range cannot be established include spanning different memory
 types, the memory could not be locked down, alignment restrictions
 are not met, etc.

 The vertex array range is enabled or disabled by calling
 EnableClientState or DisableClientState with the symbolic
 constant VERTEX_ARRAY_RANGE_NV.

 The vertex array range is either valid or invalid and this state can
 be determined by querying VERTEX_ARRAY_RANGE_VALID_NV. The vertex
 array range is valid when the following conditions are met:

 o VERTEX_ARRAY_RANGE_NV is enabled.

 o VERTEX_ARRAY is enabled.

 o VertexArrayRangeNV has been called with a non-null pointer and
 non-zero size.

 o The vertex array range has been established.

 o An implementation-dependent validity check based on the
 pointer alignment, size, and underlying memory type of the
 vertex array range region of memory.

 o An implementation-dependent validity check based on
 the current vertex array state including the strides, sizes,
 types, and pointer alignments (but not pointer value) for
 currently enabled vertex arrays.

 o Other implementation-dependent validaity checks based on
 other OpenGL rendering state.

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 185

N
V

ID
IA

 P
roprietary.

 Otherwise, the vertex array range is not valid. If the vertex array
 range is not valid, vertex array transfers will not be faster.

 When the vertex array range is valid, ArrayElement commands may
 generate undefined vertices if and only if any indexed elements of
 the enabled arrays are not within the vertex array range or if the
 index is negative or greater or equal to the implementation-dependent
 value of MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV. If an undefined vertex
 is generated, an INVALID_OPERATION error may or may not be generated.

 The vertex array cohenecy model specifies when vertex data must be
 be extracted from the vertex array memory. When the vertex array
 range is not valid, (quoting the specification) `Changes made to
 array data between the execution of Begin and the corresponding
 execution of End may effect calls to ArrayElement that are made
 within the same Begin/End period in non-sequential ways. That is,
 a call to ArrayElement that precedes a change to array data may
 access the changed data, and a call that follows a change to array
 data may access the original data.'

 When the vertex array range is valid, the vertex array coherency
 model is relaxed so that changes made to array data until the next
 "vertex array range flush" may affects calls to ArrayElement in
 non-sequential ways. That is a call to ArrayElement that precedes
 a change to array data (without an intervening "vertex array range
 flush") may access the changed data, and a call that follows a change
 (without an intervening "vertex array range flush") to array data
 may access original data.

 A 'vertex array range flush' occurs when one of the following
 operations occur:

 o Finish returns.

 o FlushVertexArrayRangeNV returns.

 o VertexArrayRangeNV returns.

 o ClientStateDisable of VERTEX_ARRAY_RANGE_NV returns.

 o ClientStateEnable of VETEX_ARRAY_RANGE_NV returns.

 o Another OpenGL context is made current.

 The client state required to implement the vertex array range
 consists of an enable bit, a memory pointer, an integer size,
 and a valid bit.

 If the memory mapping of pages within the vertex array range changes,
 using the vertex array range may or may not result in undefined data
 being fetched from the vertex arrays when the vertex array range is
 enabled and valid. To ensure that the vertex array range reflects
 the address space's current state, the application is responsible
 for calling VertexArrayRange again after any memory mapping changes
 within the vertex array range."llo

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 186

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

Additions to Chapter 5 of the 1.1 Specification (Special Functions)

 Add to the end of Section 5.4 "Display Lists"

 "VertexArrayRangeNV and FlushVertexArrayRangeNV are not complied
 into display lists but are executed immediately.

 If a display list is compiled while VERTEX_ARRAY_RANGE_NV is
 enabled, the commands ArrayElement, DrawArrays, DrawElements,
 and DrawRangeElements are accumulated into a display list as
 if VERTEX_ARRAY_RANGE_NV is disabled."

Additions to the WGL interface:

 "When establishing a vertex array range, certain types of memory
 may be more efficient than other types of memory. The commands

 void *wglAllocateMemoryNV(sizei size,
 float readFrequency,
 float writeFrequency,
 float priority)
 void wglFreeMemoryNV(void *pointer)

 allocate and free memory that may be more suitable for establishing
 an efficient vertex array range than memory allocated by other means.
 The wglAllocateMemoryNV command allocates <size> bytes of contiguous
 memory.

 The <readFrequency>, <writeFrequency>, and <priority> parameters are
 usage hints that the OpenGL implementation can use to determine the
 best type of memory to allocate. These parameters range from 0.0
 to 1.0. A <readFrequency> of 1.0 indicates that the application
 intends to frequently read the allocated memory; a <readFrequency>
 of 0.0 indicates that the application will rarely or never read the
 memory. A <writeFrequency> of 1.0 indicates that the application
 intends to frequently write the allocated memory; a <writeFrequency>
 of 0.0 indicates that the application will rarely write the memory.
 A <priority> parameter of 1.0 indicates that memory type should be
 the most efficient available memory, even at the expense of (for
 example) available texture memory; a <priority> of 0.0 indicates that
 the vertex array range does not require an efficient memory type
 (for example, so that more efficient memory is available for other
 purposes such as texture memory).

 The OpenGL implementation is free to use the <size>, <readFrequency>,
 <writeFrequency>, and <priority> parameters to determine what memory
 type should be allocated. The memory types available and how the
 memory type is determined is implementation dependent (and the
 implementation is free to ignore any or all of the above parameters).

 Possible memory types that could be allocated are uncached memory,
 write-combined memory, graphics hardware memory, etc. The intent
 of the wglAllocateMemoryNV command is to permit the allocation of
 memory for efficient vertex array range usage. However, there is
 no requirement that memory allocated by wglAllocateMemoryNV must be
 used to allocate memory for vertex array ranges.

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 187

C
opyright N

V
ID

IA
 C

orporation, 1999.
N

V
ID

IA
 P

roprietary.
 If the memory cannot be allocated, a NULL pointer is returned (and
 no OpenGL error is generated). An implementation that does not
 support this extension's memory allocation interface is free to
 never allocate memory (always return NULL).

 The wglFreeMemoryNV command frees memory allocated with
 wglAllocateMemoryNV. The <pointer> should be a pointer returned by
 wglAllocateMemoryNV and not previously freed. If a pointer is passed
 to wglFreeMemoryNV that was not allocated via wglAllocateMemoryNV
 or was previously freed (without being reallocated), the free is
 ignored with no error reported.

 The memory allocated by wglAllocateMemoryNV should be available to
 all other threads in the address space where the memory is allocated
 (the memory is not private to a single thread). Any thread in the
 address space (not simply the thread that allocated the memory)
 may use wglFreeMemoryNV to free memory allocated by itself or any
 other thread.

 Because wglAllocateMemoryNV and wglFreeMemoryNV are not OpenGL
 rendering commands, these commands do not require a current context.
 They operate normally even if called within a Begin/End or while
 compiling a display list."

Additions to the GLX Specification

 Same language as the "Additions to the WGL Specification" section
 except all references to wglAllocateMemoryNV and wglFreeMemoryNV
 should be replaced with glXAllocateMemoryNV and glXFreeMemoryNV
 respectively.

 Additional language:

 "OpenGL implementations using GLX indirect rendering should fail
 to set up the vertex array range (failing to set the vertex array
 valid bit so the vertex array range functionality is not usable).
 Additionally, glXAllocateMemoryNV always fails to allocate memory
 (returns NULL) when used with an indirect rendering context."

GLX Protocol

 None

Errors

 INVALID_OPERATION is generated if VertexArrayRange or
 FlushVertexArrayRange is called between the execution of Begin
 and the corresponding execution of End.

 INVALID_OPERATION may be generated if an undefined vertex is
 generated.

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 188

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

New State

 Initial
 Get Value Get Command Type Value Attrib
 --------- ----------- ---- ------- ------------
 VERTEX_ARRAY_RANGE_NV IsEnabled B False vertex-array
 VERTEX_ARRAY_RANGE_POINTER_NV GetPointerv Z+ 0 vertex-array
 VERTEX_ARRAY_RANGE_LENGTH_NV GetIntegerv Z+ 0 vertex-array
 VERTEX_ARRAY_RANGE_VALID_NV GetBooleanv B False vertex-array

New Implementation Dependent State

 Get Value Get Command Type Minimum Value
 --------- ----------- ----- -------------
 MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV GetIntegerv Z+ 65535

NV10 Implementation Details

 This section describes implementation-defined limits for NV10:

 The value of MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV is 65535.

 This section describes bugs in the NV10 vertex array range. These
 bugs will be fixed in a future hardware release:

 If VERTEX_ARRAY is enabled with a format of GL_SHORT and the
 vertex array range is valid, a vertex array vertex with an X,
 Y, Z, or W coordinate of -32768 is wrongly interpreted as zero.
 Example: the X,Y coordinate (-32768,-32768) is incorrectly read
 as (0,0) from the vertex array.

 If TEXTURE_COORD_ARRAY is enabled with a format of GL_SHORT
 and the vertex array range is valid, a vertex array texture
 coord with an S, T, R, or Q coordinate of -32768 is wrongly
 interpreted as zero. Example: the S,T coordinate (-32768,-32768)
 is incorrectly read as (0,0) from the texture coord array.

 This section describes the implementation-dependent validity
 checks for NV10.

 o For the NV10 implementation-dependent validity check for the
 vertex array range region of memory to be true, all of the
 following must be true:

 1. The <pointer> must be 32-byte aligned.

 2. The underlying memory types must all be the same (all
 standard system memory -OR- all AGP memory -OR- all video
 memory).

NVIDIA OpenGL Extension Specifications NV_vertex_array_range

 189

C
opyright N

V
ID

IA
 C

orporation, 1999.
N

V
ID

IA
 P

roprietary.

 o For the NV10 implementation-dependent validity check for the
 vertex array state to be true, all of the following must be
 true:

 1. (VERTEX_ARRAY must be enabled -AND-
 The vertex array stride must be less than 256 -AND-
 ((The vertex array type must be FLOAT -AND-
 The vertex array stride must be a multiple of 4 bytes -AND-
 The vertex array pointer must be 4-byte aligned -AND-
 The vertex array size must be 2, 3, or 4) -OR-
 (The vertex array type must be SHORT -AND-
 The vertex array stride must be a multiple of 4 bytes -AND-
 The vertex array pointer must be 4-byte aligned. -AND-
 The vertex array size must be 2) -OR-
 (The vertex array type must be SHORT -AND-
 The vertex array stride must be a multiple of 8 bytes -AND-
 The vertex array pointer must be 8-byte aligned. -AND-
 The vertex array size must be 4) -OR-
 (The vertex array type must be SHORT -AND-
 The vertex array stride must be a multiple of 8 bytes -AND-
 The vertex array pointer must be 8-byte aligned.)
 The vertex array stride must non-zero -AND-
 The vertex array size must be 3)))

 2. (NORMAL_ARRAY must be disabled.) -OR -
 (NORMAL_ARRAY must be enabled -AND-
 The normal array size must be 3 -AND-
 The normal array stride must be less than 256 -AND-
 ((The normal array type must be FLOAT -AND-
 The normal array stride must be a multiple of 4 bytes -AND-
 The normal array pointer must be 4-byte aligned.) -OR-
 (The normal array type must be SHORT -AND-
 The normal array stride must be a multiple of 8 bytes -AND-
 The normal array stride must non-zero -AND-
 The normal array pointer must be 8-byte aligned.)))

 3. (COLOR_ARRAY must be disabled.) -OR -
 (COLOR_ARRAY must be enabled -AND-
 The color array type must be FLOAT or UNSIGNED_BYTE -AND-
 The color array stride must be a multiple of 4 bytes -AND-
 The color array stride must be less than 256 -AND-
 The color array pointer must be 4-byte aligned -AND-
 ((The color array size must be 3 -AND-
 The color array stride must non-zero) -OR-
 (The color array size must be 4))

 4. (SECONDARY_COLOR_ARRAY must be disabled.) -OR -
 (SECONDARY_COLOR_ARRAY must be enabled -AND-
 The secondary color array type must be FLOAT or UNSIGNED_BYTE -AND-
 The secondary color array stride must be a multiple of 4 bytes -AND-
 The secondary color array stride must be less than 256 -AND-
 The secondary color array pointer must be 4-byte aligned -AND-
 ((The secondary color array size must be 3 -AND-
 The secondary color array stride must non-zero) -OR-
 (The secondary color array size must be 4))

NV_vertex_array_range NVIDIA OpenGL Extension Specifications

 190

C
op

yr
ig

ht
 N

V
ID

IA
 C

or
po

ra
tio

n,
 1

99
9.

N

V
ID

IA
 P

ro
pr

ie
ta

ry
.

 5. For texture units zero and one:

 (TEXTURE_COORD_ARRAY must be disabled.) -OR -
 (TEXTURE_COORD_ARRAY must be enabled -AND-
 The texture coord array stride must be less than 256 -AND-
 ((The texture coord array type must be FLOAT -AND-
 The texture coord array pointer must be 4-byte aligned.)
 The texture coord array stride must be a multiple of 4 bytes -AND-
 The texture coord array size must be 1, 2, 3, or 4) -OR-
 (The texture coord array type must be SHORT -AND-
 The texture coord array pointer must be 4-byte aligned.)
 The texture coord array stride must be a multiple of 4 bytes -AND-
 The texture coord array stride must non-zero -AND-
 The texture coord array size must be 1) -OR-
 (The texture coord array type must be SHORT -AND-
 The texture coord array pointer must be 4-byte aligned.)
 The texture coord array stride must be a multiple of 4 bytes -AND-
 The texture coord array size must be 2) -OR-
 (The texture coord array type must be SHORT -AND-
 The texture coord array pointer must be 8-byte aligned.)
 The texture coord array stride must be a multiple of 8 bytes -AND-
 The texture coord array stride must non-zero -AND-
 The texture coord array size must be 3) -OR-
 (The texture coord array type must be SHORT -AND-
 The texture coord array pointer must be 8-byte aligned.)
 The texture coord array stride must be a multiple of 8 bytes -AND-
 The texture coord array size must be 4)))

 6. (EDGE_FLAG_ARRAY must be disabled.)

 7. (VERTEX_WEIGHT_ARRAY_NV must be disabled.) -OR -
 (VERTEX_WEIGHT_ARRAY_NV must be enabled. -AND -
 The vertex weight array type must be FLOAT -AND-
 The vertex weight array size must be 1 -AND-
 The vertex weight array stride must be a multiple of 4 bytes -AND-
 The vertex weight array stride must be less than 256 -AND-
 The vertex weight array pointer must be 4-byte aligned)

 8. (FOG_COORDINATE_ARRAY must be disabled.)

 o For the NV10 implementation-dependent validity check based on
 other OpenGL rendering state is FALSE if any of the following are true:

 1. (COLOR_LOGIC_OP is enabled -AND-
 The logic op is not COPY)

 2. (LIGHT_MODEL_TWO_SIDE is true.)

 3. Either texture unit is enabled and active with a texture
 with a non-zero border.

 4. Several other obscure unspecified reasons.

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

 191

Name

 SGIS_texture_lod

Name Strings

 GL_SGIS_texture_lod

Version

 $Date: 1997/05/30 01:34:44 $ $Revision: 1.8 $

Number

 24

Dependencies

 EXT_texture is required
 EXT_texture3D affects the definition of this extension
 EXT_texture_object affects the definition of this extension
 SGI_detail_texture affects the definition of this extension
 SGI_sharpen_texture affects the definition of this extension

Overview

 This extension imposes two constraints related to the texture level of
 detail parameter LOD, which is represented by the Greek character lambda
 in the GL Specification. One constraint clamps LOD to a specified
 floating point range. The other limits the selection of mipmap image
 arrays to a subset of the arrays that would otherwise be considered.

 Together these constraints allow a large texture to be loaded and
 used initially at low resolution, and to have its resolution raised
 gradually as more resolution is desired or available. Image array
 specification is necessarily integral, rather than continuous. By
 providing separate, continuous clamping of the LOD parameter, it is
 possible to avoid "popping" artifacts when higher resolution images
 are provided.

 Note: because the shape of the mipmap array is always determined by
 the dimensions of the level 0 array, this array must be loaded for
 mipmapping to be active. If the level 0 array is specified with a
 null image pointer, however, no actual data transfer will take
 place. And a sufficiently tuned implementation might not even
 allocate space for a level 0 array so specified until true image
 data were presented.

Issues

 * Should detail and sharpen texture operate when the level 0 image
 is not being used?

 A: Sharpen yes, detail no.

 * Should the shape of the mipmap array be determined by the
 dimensions of the level 0 array, regardless of the base level?

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

 192

 A: Yes, this is the better solution. Driving everything from
 the base level breaks the proxy query process, and allows
 mipmap arrays to be placed arbitrarily. The issues of
 requiring a level 0 array are partially overcome by the use
 of null-point loads, which avoid data transfer and,
 potentially, data storage allocation.

 * With the arithmetic as it is, a linear filter might access an
 array past the limit specified by MAX_LEVEL or p. But the
 results of this access are not significant, because the blend
 will weight them as zero.

New Procedures and Functions

 None

New Tokens

 Accepted by the <pname> parameter of TexParameteri, TexParameterf,
 TexParameteriv, TexParameterfv, GetTexParameteriv, and GetTexParameterfv:

 TEXTURE_MIN_LOD_SGIS 0x813A
 TEXTURE_MAX_LOD_SGIS 0x813B
 TEXTURE_BASE_LEVEL_SGIS 0x813C
 TEXTURE_MAX_LEVEL_SGIS 0x813D

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)

 None

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

 193

Additions to Chapter 3 of the 1.0 Specification (Rasterization)

 GL Specification Table 3.7 is updated as follows:

 Name Type Legal Values
 ---- ---- ------------
 TEXTURE_WRAP_S integer CLAMP, REPEAT
 TEXTURE_WRAP_T integer CLAMP, REPEAT
 TEXTURE_WRAP_R_EXT integer CLAMP, REPEAT
 TEXTURE_MIN_FILTER integer NEAREST, LINEAR,
 NEAREST_MIPMAP_NEAREST,
 NEAREST_MIPMAP_LINEAR,
 LINEAR_MIPMAP_NEAREST,
 LINEAR_MIPMAP_LINEAR,
 FILTER4_SGIS
 TEXTURE_MAG_FILTER integer NEAREST, LINEAR,
 FILTER4_SGIS,
 LINEAR_DETAIL_SGIS,
 LINEAR_DETAIL_ALPHA_SGIS,
 LINEAR_DETAIL_COLOR_SGIS,
 LINEAR_SHARPEN_SGIS,
 LINEAR_SHARPEN_ALPHA_SGIS,
 LINEAR_SHARPEN_COLOR_SGIS
 TEXTURE_BORDER_COLOR 4 floats any 4 values in [0,1]
 DETAIL_TEXTURE_LEVEL_SGIS integer any non-negative integer
 DETAIL_TEXTURE_MODE_SGIS integer ADD, MODULATE
 TEXTURE_MIN_LOD_SGIS float any value
 TEXTURE_MAX_LOD_SGIS float any value
 TEXTURE_BASE_LEVEL_SGIS integer any non-negative integer
 TEXTURE_MAX_LEVEL_SGIS integer any non-negative integer

 Table 3.7: Texture parameters and their values.

 Base Array

 Although it is not explicitly stated, it is the clear intention
 of the OpenGL specification that texture minification filters
 NEAREST and LINEAR, and all texture magnification filters, be
 applied to image array zero. This extension introduces a
 parameter, BASE_LEVEL, that explicitly specifies which array
 level is used for these filter operations. Base level is specified
 for a specific texture by calling TexParameteri, TexParameterf,
 TexParameteriv, or TexParameterfv with <target> set to TEXTURE_1D,
 TEXTURE_2D, or TEXTURE_3D_EXT, <pname> set to TEXTURE_BASE_LEVEL_SGIS,
 and <param> set to (or <params> pointing to) the desired value. The
 error INVALID_VALUE is generated if the specified BASE_LEVEL is
 negative.

 Level of Detail Clamping

 The level of detail parameter LOD is defined in the first paragraph
 of Section 3.8.1 (Texture Minification) of the GL Specification, where
 it is represented by the Greek character lambda. This extension
 redefines the definition of LOD as follows:

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

 194

 LOD'(x,y) = log_base_2 (Q(x,y))

 / MAX_LOD LOD' > MAX_LOD
 LOD = (LOD' LOD' >= MIN_LOD and LOD' <= MAX_LOD
 \ MIN_LOD LOD' < MIN_LOD
 \ undefined MIN_LOD > MAX_LOD

 The variable Q in this definition represents the Greek character rho,
 as it is used in the OpenGL Specification. (Recall that Q is computed
 based on the dimensions of the BASE_LEVEL image array.) MIN_LOD is the
 value of the per-texture variable TEXTURE_MIN_LOD_SGIS, and MAX_LOD is
 the value of the per-texture variable TEXTURE_MAX_LOD_SGIS.

 Initially TEXTURE_MIN_LOD_SGIS and TEXTURE_MAX_LOD_SGIS are -1000 and
 1000 respectively, so they do not interfere with the normal operation of
 texture mapping. These values are respecified for a specific texture
 by calling TexParameteri, TexParemeterf, TexParameteriv, or
 TexParameterfv with <target> set to TEXTURE_1D, TEXTURE_2D, or
 TEXTURE_3D_EXT, <pname> set to TEXTURE_MIN_LOD_SGIS or
 TEXTURE_MAX_LOD_SGIS, and <param> set to (or <params> pointing to) the
 new value. It is not an error to specify a maximum LOD value that is
 less than the minimum LOD value, but the resulting LOD values are
 not defined.

 LOD is clamped to the specified range prior to any use. Specifically,
 the mipmap image array selection described in the Mipmapping Subsection
 of the GL Specification is based on the clamped LOD value. Also, the
 determination of whether the minification or magnification filter is
 used is based on the clamped LOD.

 Mipmap Completeness

 The GL Specification describes a "complete" set of mipmap image arrays
 as array levels 0 through p, where p is a well defined function of the
 dimensions of the level 0 image. This extension modifies the notion
 of completeness: instead of requiring that all arrays 0 through p
 meet the requirements, only arrays 0 and arrays BASE_LEVEL through
 MAX_LEVEL (or p, whichever is smaller) must meet these requirements.
 The specification of BASE_LEVEL was described above. MAX_LEVEL is
 specified by calling TexParameteri, TexParemeterf, TexParameteriv, or
 TexParameterfv with <target> set to TEXTURE_1D, TEXTURE_2D, or
 TEXTURE_3D_EXT, <pname> set to TEXTURE_MAX_LEVEL_SGIS, and <param> set
 to (or <params> pointing to) the desired value. The error
 INVALID_VALUE is generated if the specified MAX_LEVEL is negative.
 If MAX_LEVEL is smaller than BASE_LEVEL, or if BASE_LEVEL is greater
 than p, the set of arrays is incomplete.

 Array Selection

 Magnification and non-mipmapped minification are always performed
 using only the BASE_LEVEL image array. If the minification filter
 is one that requires mipmapping, one or two array levels are
 selected using the equations in the table below, and the LOD value
 is clamped to a maximum value that insures that no array beyond

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

 195

 the limits specified by MAX_LEVEL and p is accessed.

 Minification Filter Maximum LOD Array level(s)
 ------------------- ----------- --------------
 NEAREST_MIPMAP_NEAREST M + 0.4999 floor(B + 0.5)
 LINEAR_MIPMAP_NEAREST M + 0.4999 floor(B + 0.5)
 NEAREST_MIPMAP_LINEAR M floor(B), floor(B)+1
 LINEAR_MIPMAP_LINEAR M floor(B), floor(B)+1

 where:

 M = min(MAX_LEVEL,p) - BASE_LEVEL
 B = BASE_LEVEL + LOD

 For NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_NEAREST the specified
 image array is filtered according to the rules for NEAREST or
 LINEAR respectively. For NEAREST_MIPMAP_LINEAR and
 LINEAR_MIPMAP_LINEAR both selected arrays are filtered according to
 the rules for NEAREST or LINEAR, respectively. The resulting values
 are then blended as described in the Mipmapping section of the
 OpenGL specification.

 Additional Filters

 Sharpen filters (described in SGIS_sharpen_texture) operate on array
 levels BASE_LEVEL and BASE_LEVEL+1. If the minimum of MAX_LEVEL and p
 is not greater than BASE_LEVEL, then sharpen texture reverts to a
 LINEAR magnification filter. Detail filters (described in
 SGIS_detail_texture) operate only when BASE_LEVEL is zero.

 Texture Capacity

 In Section 3.8 the OpenGL specification states:

 "In order to allow the client to meaningfully query the maximum
 image array sizes that are supported, an implementation must not
 allow an image array of level one or greater to be created if a
 `complete' set of image arrays consistent with the requested
 array could not be supported."

 Given this extension's redefinition of completeness, the above
 paragraph should be rewritten to indicate that all levels of the
 `complete' set of arrays must be supportable. E.g.

 "In order to allow the client to meaningfully query the maximum
 image array sizes that are supported, an implementation must not
 allow an image array of level one or greater to be created if a
 `complete' set of image arrays (all levels 0 through p) consistent
 with the requested array could not be supported."

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

SGIS_texture_lod NVIDIA OpenGL Extension Specifications

 196

Additions to Chapter 5 of the 1.0 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

Dependencies on EXT_texture

 EXT_texture is required.

Dependencies on EXT_texture3D

 If EXT_texture3D is not supported, references to 3D texture mapping and
 to TEXTURE_3D_EXT in this document are invalid and should be ignored.

Dependencies on EXT_texture_object

 If EXT_texture_object is implemented, the state values named

 TEXTURE_MIN_LOD_SGIS
 TEXTURE_MAX_LOD_SGIS
 TEXTURE_BASE_LEVEL_SGIS
 TEXTURE_MAX_LEVEL_SGIS

 are added to the state vector of each texture object. When an attribute
 set that includes texture information is popped, the bindings and
 enables are first restored to their pushed values, then the bound
 textures have their LOD and LEVEL parameters restored to their pushed
 values.

Dependencies on SGIS_detail_texture

 If SGIS_detail_texture is not supported, references to detail texture
 mapping in this document are invalid and should be ignored.

Dependencies on SGIS_sharpen_texture

 If SGIS_sharpen_texture is not supported, references to sharpen texture
 mapping in this document are invalid and should be ignored.

Errors

 INVALID_VALUE is generated if an attempt is made to set
 TEXTURE_BASE_LEVEL_SGIS or TEXTURE_MAX_LEVEL_SGIS to a negative value.

NVIDIA OpenGL Extension Specifications SGIS_texture_lod

 197

New State

 Initial
 Get Value Get Command Type Value Attrib
 --------- ----------- ---- ------ ------
 TEXTURE_MIN_LOD_SGIS GetTexParameterfv n x R -1000 texture
 TEXTURE_MAX_LOD_SGIS GetTexParameterfv n x R 1000 texture
 TEXTURE_BASE_LEVEL_SGIS GetTexParameteriv n x R 0 texture
 TEXTURE_MAX_LEVEL_SGIS GetTexParameteriv n x R 1000 texture

New Implementation Dependent State

 None

WGL_EXT_swap_control NVIDIA OpenGL Extension Specifications

 198

Name

 EXT_swap_control

Name Strings

 WGL_EXT_swap_control

Version

 Date: 1/27/1999 Revision: 1.3

Number

 172

Dependencies

 WGL_EXT_extensions_string is required.

Overview

 This extension allows an application to specify a minimum periodicity
 of color buffer swaps, measured in video frame periods.

New Procedures and Functions

 BOOL wglSwapIntervalEXT(int interval)

 int wglGetSwapIntervalEXT(void)

New Tokens

 None

Additions to Chapter 2 of the 1.2 GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2 GL Specification (Rasterization)

 None

Additions to Chapter 4 of the 1.2 GL Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the 1.2 GL Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 GL Specification (State and State Requests)

 None

NVIDIA OpenGL Extension Specifications WGL_EXT_swap_control

 199

Additions to the WGL Specification

 wglSwapIntervalEXT specifies the minimum number of video frame periods
 per buffer swap for the window associated with the current context.
 The interval takes effect when SwapBuffers or wglSwapLayerBuffer
 is first called subsequent to the wglSwapIntervalEXT call.

 The parameter 'interval' specifies the minimum number of video frames
 that are displayed before a buffer swap will occur.

 A video frame period is the time required by the monitor to display a
 full frame of video data. In the case of an interlaced monitor,
 this is typically the time required to display both the even and odd
 fields of a frame of video data. An interval set to a value of 2
 means that the color buffers will be swapped at most every other video
 frame.

 If 'interval' is set to a value of 0, buffer swaps are not synchron-
 ized to a video frame. The 'interval' value is silently clamped to
 the maximum implementation-dependent value supported before being
 stored.

 The swap interval is not part of the render context state. It cannot
 be pushed or popped. The current swap interval for the window
 associated with the current context can be obtained by calling
 wglGetSwapIntervalEXT. The default swap interval is 1.

 Because there is no way to extend wgl, this call is defined in the ICD
 and can be called by obtaining the address with wglGetProcAddress.
 Because this is not a GL extension, it is not included in the
 GL_EXTENSIONS string.

Errors

 If the function succeeds, the return value is TRUE. If the function
 fails, the return value is FALSE. To get extended error information,
 call GetLastError.

 ERROR_INVALID_DATA The 'interval' parameter is negative.

New State

 None

New Implementation Dependent State

 None

