
Kick Assembler
Reference Manual

By Mads Nielsen

ii

Table of Contents
1. Introduction .. 1
2. Getting Started .. 2

2.1. Running the Assembler .. 2
2.2. An Example Interrupt ... 2
2.3. Configuring the Assembler .. 3

3. Basic Assembler Functionality ... 4
3.1. Mnemonics ... 4
3.2. Argument Types .. 6
3.3. Number formats .. 7
3.4. Labels and Multi Labels ... 7
3.5. Memory Directives .. 8
3.6. Data Directives ... 9
3.7. Import Directives ... 10
3.8. Comments .. 10
3.9. Console Output ... 10

4. Introducing the Script Language ... 12
4.1. Expressions ... 12
4.2. Variables, Constants and User Defined Labels .. 12
4.3. Scoping .. 13
4.4. Numeric Values ... 14
4.5. Parentheses ... 15
4.6. String Values .. 15
4.7. Char Values .. 16
4.8. The Math Library .. 17

5. Branching and Looping ... 19
5.1. Boolean Values ... 19
5.2. The .if directive ... 20
5.3. Question mark if's .. 20
5.4. The .for directive ... 21
5.5. Optimization Considerations when using Loops .. 21

6. Data Structures .. 23
6.1. User Defined Structures .. 23
6.2. List Values ... 24
6.3. Working with Mutable Values ... 25
6.4. Hashtable Values ... 25

7. Functions and Macros ... 27
7.1. Functions .. 27
7.2. Macros ... 27
7.3. Pseudo Commands ... 28

8. Namespaces ... 31
8.1. The Namespace Directive .. 31
8.2. File Namespaces .. 32
8.3. Label Namespaces ... 32
8.4. Accessing Local Labels of Macros and Pseudocommands ... 33

9. Import and Export .. 34
9.1. Passing Command Line Arguments to the Script ... 34
9.2. Import of Binary Files .. 34
9.3. Import of SID Files .. 35
9.4. Converting Graphics ... 38
9.5. Writing to User Defined Files .. 39
9.6. Exporting Labels to other Sourcefiles .. 39
9.7. Exporting Labels to VICE ... 40

10. Modifiers .. 41
10.1. Modify Directives .. 41

11. Special Features ... 42

Kick Assembler Manual

iii

11.1. Basic Upstart Program .. 42
11.2. Opcode Constants .. 42
11.3. Colour Constants .. 43
11.4. Making 3D Calculations .. 43

12. Testing .. 47
12.1. Asserting expressions .. 47
12.2. Asserting errors in expressions ... 47
12.3. Asserting code ... 47
12.4. Asserting errors in code .. 48

13. 3rd Party Java plugins ... 49
13.1. The Test Project .. 49
13.2. Registering your Plugins ... 49
13.3. Macro Plugins ... 49
13.4. The IValue Interface ... 50
13.5. The IEngine Inteface .. 50
13.6. Modifyer Plugins ... 51
13.7. Plugin Archives ... 51

A. Quick Reference .. 53
A.1. Command Line Options ... 53
A.2. Assembler Directives ... 54
A.3. Value Types ... 54

B. Technical Details ... 55
B.1. The flexible Parse Algorithm .. 55
B.2. Recording of Side Effects ... 55
B.3. Function Mode and Asm Mode ... 55
B.4. Invalid Value Calculations .. 55

1

Chapter 1
Introduction

Welcome to Kick Assembler, an advanced MOS 65xx assembler combined with a Java Script like script lan-
guage.

The assembler has all the features you would expect of a modern assembler like macros, illegal and DTV op-
codes and commands for unrolling loops. It also has features like pseudo commands, import of SID files, import
of standard graphic formats and support for 3rd party Java plugins. The script language makes it easy to gener-
ate data for your programs. This could be data such as sine waves, coordinates for a vector object, or graphic
converters. Writing small data generating programs directly in you assembler source code is much handier than
writing them in external languages like Java or C++.The script language and the assembler is integrated. Unlike
other solutions, where scripts are prepassed, the script code and the assembler directives works together giving
a more complete solution.

As seen by the size of this manual, Kick Assembler has a lot of functionality. You don't need to know it all to
use the assembler, and getting to know all the features may take some time. If you are new to Kick Assembler, a
good way to start is to read Chapter 2, Getting Started, Chapter 3, Basic Assembler Functionality and Chapter 4,
Introducing the Script Language and then supplement with the features you need.

This is the third version of Kick Assembler. The first version (1.x) was a normal 6510 cross assembler developed
around 2003 and was never made public. The second version (2.x) was developed in 2006 and combined the
assembler with a script language, giving you the opportunity to write programs that generate data for the assembler
code. Finally in august 2006 the project went public. The third version (3.x) improved the underlying assembling
mechanism using a flexible pass algorithm, recording of side effects and handling of invalid values. This gave
better performance, and made it possible make more advance feature. Through the years the project have grown
quite big, with a professional setup including a its own code repository, a large automated test suite and automatic
building and deploying.

A lot of people have contributed with valuable comments and suggestions by mail and on CSDB. Thanks guys.
Your feedback is greatly appreciated. I would especially like to thank Martin ‘Cruzer’ Kristensen for proofreading
and testing the assembler; Gunni ‘Dragnet’ Rode and Bastiaan ‘Mace’ for proofreading; Gerwin Klein for doing
JFlex (the lexical analyser used for this assembler); Scott Hudson, Frank Flannery and C. Scott Ananian for doing
CUP (The parser generator). And finally, Thanks to XMLMind for sponsoring the project with a pro version of
their XML editor in which this manual is written.

I would like to hear from people that use Kick Assembler so do not hesitate to write your comments to
kickassembler@no.spam.theweb.dk (<- Remove no.spam. for real address).

I wish you happy coding..

2

Chapter 2
Getting Started

This chapter is written to quickly get you started using Kick Assembler. The details of the assembler's func-
tionalities will be presented later.

2.1. Running the Assembler
Kick Assembler run on any platform with Java5.0 or higher installed. Java can be downloaded for free on

Javas website (http://java.com/en/download/index.jsp). To assemble the file myCode.asm simply go to a command
prompt and write:

java –jar kickass.jar myCode.asm

And that's it.

Having problems with Java? Some Windows users found that Java couldn't be reached from the command
prompt after installation. If this is the case you have to insert it in your path environment variable. You can test
it by writing:

java –version

Java will now display the Java version if it's correctly installed.

2.2. An Example Interrupt
Below is a little sample program to quickly get you started using Kick Assembler. It sets up an interrupt, which

play some music. It shows you how to use non-standard features such as the .pc directive, comments, how to use
macros and include external files. This should be enough to get you (kick) started.

//--
//--
// Simple IRQ
//--
//--
.pc = $4000 “Main Program”
 lda #$00
 sta $d020
 sta $d021
 lda #$00
 jsr $1000 // init music
 sei
 lda #<irq1
 sta $0314
 lda #>irq1
 sta $0315
 asl $d019
 lda #$7b
 sta $dc0d
 lda #$81
 sta $d01a
 lda #$1b
 sta $d011
 lda #$80
 sta $d012
 cli
this: jmp this

//--

http://java.com/en/download/index.jsp

Getting Started

3

irq1:
 asl $d019
 :SetBorderColor(2)
 jsr $1003 // play music
 :SetBorderColor(0)
 pla
 tay
 pla
 tax
 pla
 rti

//--
.pc=$1000 “Music”
.import binary “ode to 64.bin”

//--
// A little macro
.macro SetBorderColor(color) {
 lda #color
 sta $d020
}

2.3. Configuring the Assembler
Kick Assembler has a lot of command line options (a summary is given in Appendix A, Quick Reference).

For example, if you assemble your program with the –showmem option you will get a memorymap shown after
assembling:

java –jar kickass.jar –showmem myCode.asm

By placing a file called KickAss.cfg in the same folder as the KickAss.jar, you can set command line options
that are used at every assembling. Lets say you always wants to have shown a memorymap after assembling and
then have the result executed in the C64 emulator VICE. Then you write the following in the KickAss.cfg file:

-showmem
-execute “c:/c64/winvice/x64.exe –confirmexit”

(Replace c:/c64/winvice/ with a path that points to the vicefolder on your machine)

4

Chapter 3
Basic Assembler Functionality

This chapter describes the mnemonics and the basic directives that are not related to the script language.

3.1. Mnemonics
In Kick Assembler you can write assembler mnemonics the traditional way:

lda #0
sta $d020
sta $d021

However, it ignores format statements such as newline and tabs so you can format your program in any way
you like. If you wish, you can write your entire program in one line:

lda #0 sta $d020 sta $d021

This comes in handy when using the script language. Kick Assembler supports all opcodes, also the illegal
ones. A complete list of commands and their opcodes in the each mode is shown here:

Table 3.1. Mnemonics

cmd noarg imm zp zpx zpy izx izy abs abx aby ind rel

adc $69 $65 $75 $61 $71 $6d $7d $79

ahx $93 $9f

alr $4b

anc $0b

anc2 $2b

and $29 $25 $35 $21 $31 $2d $3d $39

arr $6b

asl $0a $06 $16 $0e $1e

axs $cb

bcc $90

bcs $b0

beq $f0

bit $24 $2c

bmi $30

bne $d0

bpl $10

brk $00

bvc $50

bvs $70

clc $18

cld $d8

cli $58

clv $b8

cmp $c9 $c5 $d5 $c1 $d1 $cd $dd $d9

Basic Assembler Functionality

5

cmd noarg imm zp zpx zpy izx izy abs abx aby ind rel

cpx $e0 $e4 $ec

cpy $c0 $c4 $cc

dcp $c7 $d7 $c3 $d3 $cf $df $db

dec $c6 $d6 $ce $de

dex $ca

dey $88

eor $49 $45 $55 $41 $51 $4d $5d $59

inc $e6 $f6 $ee $fe

inx $e8

iny $c8

isc $e7 $f7 $e3 $f3 $ef $ff $fb

jmp $4c $6c

jsr $20

las $bb

lax $ab $a7 $b7 $a3 $b3 $af $bf

lda $a9 $a5 $b5 $a1 $b1 $ad $bd $b9

ldx $a2 $a6 $b6 $ae $be

ldy $a0 $a4 $b4 $ac $bc

lsr $4a $46 $56 $4e $5e

nop $ea

ora $09 $05 $15 $01 $11 $0d $1d $19

pha $48

php $08

pla $68

plp $28

rla $27 $37 $23 $33 $2f $3f $3b

rol $2a $26 $36 $2e $3e

ror $6a $66 $76 $6e $7e

rra $67 $77 $63 $73 $6f $7f $7b

rti $40

rts $60

sax $87 $97 $83 $8f

sbc $e9 $e5 $f5 $e1 $f1 $ed $fd $f9

sbc2 $eb

sec $38

sed $f8

sei $78

shx $9e

shy $9c

slo $07 $17 $03 $13 $0f $1f $1b

sre $47 $57 $43 $53 $4f $5f $5b

Basic Assembler Functionality

6

cmd noarg imm zp zpx zpy izx izy abs abx aby ind rel

sta $85 $95 $81 $91 $8d $9d $99

stx $86 $96 $8e

sty $84 $94 $8c

tas $9b

tax $aa

tay $a8

tsx $ba

txa $8a

txs $9a

tya $98

xaa $8b

DTV opcodes are also supported. To use these you have to use the –dtv option at the command line when
running Kick Assembler. The DTV commands are:

Table 3.2. DTV Mnemonics

cmd noarg imm zp zpx zpy izx izy abs Abx aby ind rel

bra $12

sac $32

sir $42

3.2. Argument Types
Kick Assembler uses the traditional notation for addressing modes / argument types:

Table 3.3. Argument Types

Mode Example

No argument nop

Immediate lda #$30

Zeropage lda $30

Zeropage,x lda $30,x

Zeropage,y ldx $30,y

Indirect zeropage,x lda ($30,x)

Indirect zeropage,y lda ($30),y

Abolute lda $1000

Absolute,x lda $1000,x

Absolute,y lda $1000,y

Indirect jmp ($1000)

Relative to program counter bne loop

An argument is converted to its zeropage mode if possible. This means that lda $0030 will generate an lda
command in its zeropage mode1.

You can force the assembler to use a given addressing mode by using mnemonic extensions like this:

1If the argument is unknown (eg. an unresolved label) in the first pass, the assembler will assume it’s a 16 bit value

Basic Assembler Functionality

7

lda.a $0030 // Uses absolute mode
sta.z label // Uses zeropage mode
ldx.im $10 // Equal to lda #$10
label:

Here is a list of the extensions:

Table 3.4. Mnemonic Extensions

Ext Mode Example

im, imm Immediate

z, zp Zeropage ldx.z $1234

zx, zpx Zeropage,x lda.zpx table

zy, zpy Zeropage,y

izx, izpx Indirect zeropage,x

izy, izpy Indirect zeropage,y

a, abs Abolute ldx.a $0010

ax, absx Absolute,x lda.absx $1234

ay, absy Absolute,y

I, ind Indirect jmp.i $1000

r, rel Relative to program counter

3.3. Number formats
Kick Assembler supports the standard number formats:

Table 3.5. Number formats

Prefix Format Example

Decimal lda #42

$ Hexadecimal lda #$2a, lda #$ff

% Binary lda #%101010

3.4. Labels and Multi Labels
Label declarations in Kick Assembler end with ‘:’ and have no postfix when referred to, as shown in the

following program:

loop: inc $d020
 inc $d021
 jmp loop

Kick Assembler also supports multi labels, which are labels that can be declared more than once. These are
useful to prevent name conflicts between labels. A multi label starts with a ‘!’ and when your reference it you have
to end with a ‘+’ to refer to the next multi label or ‘-‘ to refer to the previous multi label:

 ldx #100
!loop: inc $d020
 dex
 bne !loop- // Jumps to the previous instance of !loop

 ldx #100
!loop: inc $d021
 dex
 bne !loop- // Jumps to the previous instance of !loop

Basic Assembler Functionality

8

or

 ldx #10
!loop:
 jmp !+ // Jumps over the two next nops to the ! label
 nop
 nop
!: jmp !+ // Jumps over the two next nops to the ! label
 nop
 nop
!:
 dex
 bne !loop- // Jumps to the previous !loop label

Another way to avoid conflicting variables is to use user defined scopes, which are explained in the scoping
section of Chapter 4, Introducing the Script Language.

A ‘*’ returns the value of the current memory location so instead of using labels you can write your jumps
like this:

// Jumps with '*'
 jmp *

 inc $d020
 inc $d021
 jmp *-6

// The same jumps with labels
this: jmp this

!loop: inc $d020
 inc $d021
 jmp !loop-

3.5. Memory Directives
The .pc directive is used to set the program counter. A program should always start with a .pc directive to tell

the assembler where to put the program. Here are some examples of use:

.pc = $1000 "Program"
 ldx #10
!loop: dex
 bne !loop-
 rts

.pc = $4000 "Data"
 .byte 1,0,2,0,3,0,4,0

.pc = $5000 "More data"
 .text "Hello"

The last argument is optional and is used to name the memory block created by the directive. When using the
‘-showmem’ option when running the assembler a memory map will be generated that displays the memory usage
and block names. The map of the above program looks like this:

Memory Map

$1000-$1005 Program
$4000-$4007 Data
$5000-$5004 More data

By using the virtual option on the .pc directive you can declare a memory block that is not saved in the resulting
file.

Basic Assembler Functionality

9

.pc = $0400 "Data Tables 1" virtual
table1: .fill $100,0
table2: .fill $100,0

.pc = $0400 "Data Tables 2" virtual
table3: .fill $150,0
table4: .fill $100,0

.pc = $1000 "Program"
 ldx #0
 lda table1,x
 …

Note that virtual memory blocks can overlap other memory blocks. They are marked with an asterisk in the
memory map.

Memory Map

*$0400-$05ff Data Tables 1
*$0400-$064f Data Tables 2
$1000-$1005 Program

Since virtual memory blocks aren’t saved, the above example will only save the memory from $1000 to $1005.

With the .align directive, you can align the program counter to a given interval. This is useful for optimizing
your code as crossing a memory page boundary yields a penalty of one cycle for memory referring commands.
To avoid this, use the .align command to align your tables:

.pc = $1000 "Program"
 ldx #1
 lda data,x
 rts

.pc = $10ff //Bad place for the data

.align $100 //Alignment to the nearest page boundary saves a cycle
data: .byte 1,2,3,4,5,6,7,8

In case you want your code placed at position $1000 in the memory but want it assembled like it was placed
at $2000, you can use the .pseudopc directive:

.pc = $1000 "Program to be relocated at $2000"

.pseudopc $2000 {
loop: inc $d020
 jmp loop // Will produce jmp $2000 instead of jmp $1000
}

3.6. Data Directives
The .byte, .word, .dword and .text directives are used to generate byte, word (one word= two bytes), dword

(double word = 4 bytes) and text data as in standard 6510 assemblers.

.byte 1,2,3,4 // Generates the bytes 1,2,3,4

.word $2000,$1234 // Generates the bytes $00,$20,$34,$12

.dword $12341234 // Generates the bytes $34,$12,$34,$12

With the .fill directive you can fill a section of the memory with bytes. It works like a loop and automatically
sets the variable i to the byte number.

.fill 5, 0 // Generates byte 0,0,0,0,0

.fill 5, i // Generates byte 0,1,2,3,4

.fill 256, 127.5 + 127.5*sin(toRadians(i*360/256)) // Generates a sine curve

Basic Assembler Functionality

10

3.7. Import Directives
With the .import directive you can import external files into your source. You can import source, binary, C64,

and text files:

// Import and assemble the sourcefile ‘standardlibrary.asm’
.import source "StandardLibrary.asm"

// import the bytes from the file 'music.bin'
.import binary "Music.bin"

// Import the bytes from the c64 file 'charset.c64'
// (Same as binary but skips the first two address bytes)
.import c64 "charset.c64"

// Import the chars from the text file
// (Converts the bytes as a .text directive would do)
.import text "scroll.txt"

When Kick Assembler searches for a file, it first look in the current directory. Afterwards it looks in the direc-
tories supplied by the ‘-libdir’ parameter when running the assembler. This enables you to create standard libraries
for files you use in several different sources. A command line could look like this:

java –jar kickass.jar myProgram.asm –libdir ..\music –libdir c:\code\stdlib

If you build source code libraries you might want to ensure that the library is only included once in your code.
This can be done by placing a .importonce directive in the top of the library file:

File1.asm:
.importonce
.print "This will only be printed once!"

File2.asm:
.import source "File1.asm" // This will import File1
.import source "File1.asm" // This will not import anything

3.8. Comments
Comments are pieces of the program that are ignored by the assembler. Kick Assembler supports line and block

comments known from languages such as C++ and Java. When the assembler sees ‘//’ it ignores the rest of that
line. C block comments ignores everything between /* and */.

/*--
This little program is made to demonstrate comments
--*/
 lda #10
 sta $d020 // This is also a comment
 sta /* Comments can be placed anywhere */ $d021
 rts

Traditional 65xx assembler line comments (;) are not supported since the semicolon is used in for-loops in the
script language.

3.9. Console Output
With the .print directive you can output text to the user while assembling. For example:

.print "Hello world"

.var x=2

.print "x="+x

Basic Assembler Functionality

11

This will give the following output from the assembler:

parsing
flex pass 1
Output pass
 Hello world
 x=2.0

Notice that the output is given during the output pass. You can also print the output immediately with the .print-
now command. This is useful for debugging script where errors prevent the execution of the output pass. The .print-
now command will print the output in each pass, and in some passes the output might be incomplete due to lack
of information. In the following example we print a label that isn't resolved in the first pass:

.printnow "loop=$" + toHexString(loop)

.pc = $1000
loop: jmp loop

This will give the following output:

parsing
flex pass 1
 loop=$<<Invalid String>>
flex pass 2
 loop=$1000
Output pass

If you detect an error while assembling, you can use the .error directive to terminate the assembling and display
an error message:

.var width = 45

.if (width>40) .error "width can’t be higher than 40"

12

Chapter 4
Introducing the Script Language

In this chapter the basics of the script language is introduced. We will focus on how Kick Assembler evaluates
expressions, the standard values and libraries. Later chapters will deal with more advanced areas.

4.1. Expressions
Kick assembler has a built in mechanism for evaluating expressions. An example of an expression is 25+2*3/

x. Expressions can be used in many different contexts, for example to calculate the value of a variable or to define
a byte:

 lda #25+2*3/x
 .byte 25+2*3/x

Standard assemblers can only calculate expressions based on numbers, while Kick Assembler can evaluate
expressions based on many different types like: Numbers, Booleans, Strings, Lists, Vectors, and Matrixes. So, if
you want to calculate an argument based on the second value in a list you write:

 lda #35+myList.get(1) // 1 because first element is number 0

Or perhaps you want to generate your argument based on the x-coordinate of a vector:

 lda #35+myVector.getX()

Or perhaps on the basis of the x-coordinate on the third vector in a list:

 lda #35+myVectorList.get(2).getX()

I think you get the idea by now. Kick Assembler's evaluation mechanism is much like those in modern pro-
gramming languages. It has a kind of object oriented approach, so calling a function on a value(/object) executes
a function specially connected to the value. Operators like +, -,*, /, ==, !=, etc., are seen as functions and are also
specially defined for each type of value.

In the following chapters, a detailed description of how to use the value types and functions in Kick Assembler
will be presented.

4.2. Variables, Constants and User Defined Labels
With variables you can store data for later use. Before you can use a variable you have to declare it. You do

this with the .var directive:

 .var x=25
 lda #x // Gives lda #25

If you want to change x later on you write:

 .eval x=x+10
 lda #x // Gives lda #35

This will increase x by 10. The .eval directive is used to make Kick Assembler evaluate expressions. In fact,
the .var directive above is just a convenient shorthand of ‘.eval var x =25’, where ‘var’ is subexpression that
declares a variable (this will come in handy later when we want to define variables in for-loops).

Two other shorthands exist: the ++ and the -- operator, which automatically calls a referenced variable with
+1 or -1. For example:

Introducing the Script Language

13

 .var x = 0
 .eval x++ // Gives x=x+1
 .eval x-- // Gives x=x-1

Experienced users of modern programming languages will know that assignments return a value, e.g. x = y =
z = 25 first assigns 25 to z, which returns 25 that is assigned to y, which returns 25 that is assigned to x. Kick
Assembler supports this as well. Notice that the ++ and -- works as real ++ and –- postfix operators, which means
that they return the original value and not the new (Ex: .eval x=0 .eval y=x++, will set x to 1 and y to 0)

You can also declare constants:

.const c=1 // Declares the constant c to be 1

.eval const pi=3.1415 // Declares the constant pi using the eval form

.const name = "Camelot" // Constants can assume any value, for example string

A constant can't be assigned a new value, so .eval pi=22 will generate an error. Note that not all values are
immutable. If you define a constant that points to a list, the content of the list can still change. If you want to make
a mutable value immutable, you can use its lock() function, which will lock it's content:

.const immutableList = List().add(1,2,3).lock()

After this you will get an error if you try to add an element or modify existing elements.

With the .enum statement you can define enumerations, which are series of constants:

.enum {singleColor, multiColor} // Defines singleColor=0, multiColor=1

.enum {effect1=1,effect2=2,end=$ff} // Assigns values explicitly

.enum {up,down,left,right, none=$ff} // You can mix implicit and explicit
 // assignment of values

Variables and constants can only be seen after they are declared while labels can be seen in the entire scope.
You can define a label with the .label directive like you define variables and constants:

 // This fails
 inc myLabel1
 .const myLabel1 = $d020

 // This is ok
 inc myLabel2
 .label myLabel2 = $d020

4.3. Scoping
You can limit the scope of you variables and labels by defining a user defined scope. This is done by {..}.

Everything between the brackets is defined in a local scope and can't be seen from the outside.

Function1: {
 .var length = 10
 ldx #0
 lda #0
loop: sta table1,x
 inx
 cpx #length
 bne loop
}

Function2: {
 .var length = 20 // doesn’t collide with the previous ‘length’
 ldx #0
 lda #0
loop: sta table2,x // the label doesn’t collide with the previous ‘loop’

Introducing the Script Language

14

 inx
 cpx #length
 bne loop
}

Scopes can be nested as many times as you wish as demonstrated by the following program:

.var x = 10
{
 .var x=20
 {
 .print "X in 2nd level scope read from 3rd level scope is " + x
 .var x=30
 .print "X in 3rd level scope is " + x
 }
 .print "X in 2nd level scope is " + x
}
.print "X in first level scope is " + x

The output of this is:

X in 2nd level scope read from 3rd level scope is 20.0
X in 3rd level scope is 30.0
X in 2nd level scope is 20.0
X in first level scope is 10.0

4.4. Numeric Values
Numeric values are numbers, covering both integers and floats. Standard numerical operators (+,-,*, and /) work

as in standard programming languages. You can combine them with each other and they will obey the standard
precedence rules. Here are some examples:

25+3
5+2.5*3-10/2
charmem + y * $100

In practical use they can look like this:

.var charmem = $0400
 ldx #0
 lda #0
loop: sta charmem + 0*$100,x
 sta charmem + 1*$100,x
 sta charmem + 2*$100,x
 sta charmem + 3*$100,x
 inx
 bne loop

You can also use bitwise operators to perform and, or, exclusive or, and bit shifting operations.

 .var x=$12345678
 .word x & $00ff, [x>>16] & $00ff // gives .word $0078, $0034

Special for 65xx assemblers are the high and low-byte operators (>,<) that are typically used like this:

 lda #<interrupt1 // Takes the lowbyte of the interupt1 value
 sta $0314
 lda #>interrupt1 // Takes the high byte of the interupt1 value
 sta $0315

Introducing the Script Language

15

Table 4.1. Numeric Values

Name Operator Examples Description

Unary minus - Inverts the sign of a num-
ber.

Plus + 10+2 = 12 Adds two numbers.

Minus - 10-8=2 Subtracts two numbers.

Multiply * 2*3 =6 Multiply two numbers.

Divide / 10/2 = 5 Divides two numbers.

High byte > >$1020 = $10 Returns the second byte of
a number.

Low byte < <$1020 = $20 Returns the first byte of a
number.

Bitshift left << 2<<2 = 8 Shifts the bits by a giv-
en number of spaces to the
left.

Bitshift right >> 2>>1=1 Shifts the bits by a giv-
en number of spaces to the
right.

Bitwise and & $3f & $0f = $f Performs bitwise and be-
tween two numbers.

Bitwise or | $0f | $30 = $3f Performs a bitwise or be-
tween two numbers.

Bitwise eor ^ $ff ^ $f0 = $0f Performs a bitwise exclu-
sive or between two num-
bers.

You can get the number representation of an arbitrary value by using the general .number() function. Eg.

 .print ‘x’.number()

4.5. Parentheses
Since traditional 65xx assembler notation has already used soft parenthesis to signal an indirect addressing

mode, you will have to use hard parenthesis to specify a sub expression that must be evaluated before others.

 lda #2+5*2 // gives lda #12
 lda #[2+5]*2 // gives lda #14

You can nest as many parentheses as you want, so [[[[2+4]]]*3]+25.5 is a legal expression.

4.6. String Values
Strings are used to contain text. You can define a string like this:

 .var message = "Hello World"
 .text message // Gives .text "Hello world"

Normally quotes (") will denote the end or start of the string. You can use the quote as a character in the string
by adding a backslash in front of the quote:

 .text “He said: \"Hello World\""

Every object has a string representation and you can concatenate strings with the + operator. For example:

Introducing the Script Language

16

.var x=25

.var myString= “X is “ + x // Gives myString = "X is 25"

You can use the .print directive to print a string to the console while assembling. This is useful when debugging.
Printing x and y can be done like this:

 .print "x="+x
 .print "y="+y

You can also print labels to see which location they refer to. If you do this, it's best to convert the label value
to hexadecimal notation first:

 .print “int1=$”+toHexString(int1)

int1: sta regA+1
 stx regX+1
 sty regY+1
 lsr $d019
 // Etc.

Here is a list of functions/operators defined on strings:

Table 4.2. String Values

Function/Operator Description

+ Appends two strings.

size() Returns the number of characters in the string.

charAt(n) Returns the character at position n.

substring(i1,i2) Returns the substring beginning at i1 and ending at i2
(char at i2 not included).

asNumber() Converts the string to a number value (eg, “35”.asNum-
ber()).

asBoolean() Converts the string to a boolean value (eg,
“true”.asBoolean()).

Here are the functions that take a number value and convert it to a string:

Table 4.3. Numbers to Strings

Function Description

toIntString(x) Return x as a integer string (eg x=16.0 will return “16”).

toBinaryString(x) Return x as a binary string (eg x=16.0 will return
“10000”).

toOctalString(x) Return x as a octal string (eg x=16.0 will return “20”).

toHexString(x) Return x as a hexadecimal string (eg x=16.0 will return
“10”).

You can get the string representation of an arbitrary value by using the general .string() function. Eg.

 .print 1234.string().charAt(2) // Prints 3

4.7. Char Values
Char values, or characters, are used like this:

Introducing the Script Language

17

 lda #'H'
 sta $0400
 lda #'i'
 sta $0401

 lda #"?!#".charAt(1)
 sta $0402

 .byte 'H','e','l','l','o',' '
 .text "World"+'!'

In the above example, chars are used in two ways. In the first examples their numeric representation are used
as arguments to the lda commands and in the final example, '!'s string representation is appended to the "World"
string.

Char values is a subclass of number values, which means that it has all the functions that are placed on the
number values, so you can do stuff like.

 lda #’H’+1 // Same as lda #’I’
 sta $0400
 lda #’A’+1 // Same as lda #’B’
 sta $0401
 lda #’L’+1 // Same as lda #’M’
 sta $0402

4.8. The Math Library
Kick Assembler's math library is built upon the Java 5.0 math library. This means that nearly every constant and

command in Java's math library is available in Kick Assembler. Here is a list of available constants and commands.
For further explanation consult the Java 5.0 documentation at Suns homepage. The only non Java math library
function is mod (modulo).

Table 4.4. Math Constants

Constant Value

PI 3.141592653589793

E 2.718281828459045

Table 4.5. Math Functions

Function Description

abs(x) Returns the absolute (positive) value of x.

acos(x) Returns the arc cosine of x.

asin(x) Returns the arc sine of x.

atan(x) Returns the arc tangent x

atan2(y,x) Returns the angle of the coordinate (x,y) relative to the
positive x-axis. Useful when converting to polar coor-
dinates.

cbrt(x) Returns the cube root of x.

ceil(x) Rounds up to the nearest integer.

cos(r) Returns the cosine of r.

cosh(x) Returns the hyperbolic cosine of r.

exp(x) Returns ex.

expm1(x) Returns ex-1.

Introducing the Script Language

18

Function Description

floor(x) Rounds down to the nearest integer.

hypot(a,b) Returns sqrt(x2+y2).

IEEEremainder(x,y) Returns the remainder of the two numbers as described
in the IEEE 754 standard.

log(x) Returns the natural logarithm of x.

log10(x) Returns the base 10 logarithm of x.

log1p(x) Returns log(x+1).

max(x,y) Returns the highest number of x and y.

min(x,y) Returns the smallest number of x and y.

mod(a,b) Converts a and b to integers and returns the remainder
of a/b.

pow(x,y) Returns x raised to the power of y.

random() Returns a random number x where 0 ≤ x < 1.

round(x) Rounds x to the nearest integer.

signum(x) Returns 1 if x>0, -1 if x<0 and 0 if x=0.

sin(r) Returns the sine of r.

sinh(x) Returns the hyperbolic sine of x.

sqrt(x) Returns the square root of x.

tan(r) Returns the tangent of r.

tanh(x) Returns the hyperbolic tangent of x.

toDegrees(r) Converts a radian angle to degrees.

toRadians(d) Converts a degree angle to radians.

Here are some examples of use.

 // Load a with a random number
 lda #random()*256

 // Generate a sine curve
 .fill 256,round(127.5+127.5*sin(toRadians(i*360/256)))

19

Chapter 5
Branching and Looping

Kick Assembler has control directives that let you put conditions on when a directive is executed and how
many time it is executed. These are explained in this chapter.

5.1. Boolean Values
The conditions for control directives are given by Boolean values, which are values that can be true or false.

They are generated and used as in programming languages like Java and C#. The following are examples of
boolean variables:

.var myBoolean1 = true // Set the variable to true

.var myBoolean2 = false // Set the variable to false

.var fourHigherThanFive = 4>5 // Sets fourHigherThanFive = false

.var aEqualsB = a==b // Sets true if a is the same as b

.var xNot10 = x!=10 // Sets true if x doesn’t equal 10

Here is the standard set of operators for generating Booleans:

Table 5.1. Boolean generating Functions

Name Operator Example Description

Equal == a==b Returns true if a equals b,
otherwise false.

Not Equal != a!=b Returns true if a doesn't
equal b, otherwise false.

Greater > a>b Returns true if a is greater
than b, otherwise false.

Less < a<b Returns true if a is less than
b, otherwise false.

Greater than >= a>=b Returns true if a is greater
than or equal to b, other-
wise false.

Less than <= a<=b Returns true if a is less or
equal to b, otherwise false.

All the operators are defined for numeric values, other values have defined a subset of the above. E.g. you can't
say that one boolean is greater than another, but you can see if they have the same values:

.var b1 = true==true // Sets b1 to true

.var b2 = true!=[10<20] // Sets b2 to false

Boolean values have a set of operators assigned. These are the following:

Table 5.2. Boolean Operators

Name Operator Example Description

Not ! !a Returns true if a is false,
otherwise false.

And && a&&b Returns true if a and b are
true, otherwise false.

Branching and Looping

20

Name Operator Example Description

Or || A||b Returns true if a or b are
true, otherwise false.

And are used like this:

.var allTrue = 10HigherThan100 && aEqualsB // Is true if the two boolean
 // arguments are true.

Like in languages like C++ or Java, the && and || operators are short circuited. This means that if the first
argument of an && operator is false, then the second argument won't be evaluated since the result can only be
false. The same happens if the first argument of an || operator is true.

5.2. The .if directive
If-directives work like in standard programming languages. With an .if directive you have the proceeding di-

rective executed only if a given boolean expression is evaluated to true. Here are some examples:

// Set x to 10 if x is higher that 10
.if (x>10) .eval x=10

// Only show rastertime if the ‘showRasterTime’ boolean is true
.var showRasterTime = false
.if (showRasterTime) inc $d020
jsr PlayMusic
.if (showRasterTime) dec $d020

You can group several statements together in a block with {…} and have them executed together if the boolean
expression is true:

// If IrqNr is 3 then play the music
.if (irqNr==3) {
 inc $d020
 jsr music+3
 dec $d020
}

By adding an else statement you can have an expression executed if the boolean expression is false:

// Add the x’th entry of a table if x is positive or
// subtract it if x is negative
.if (x>=0) adc zpXtable+x else sbc zpXtable+abs(x)

// Init an offset table or display a warning if the table length is exceeded
.if (i<tableLength) {
 lda #0
 sta offset1+i
 sta offset2+i
} else {
 .error "Error!! I is too high!"
}

5.3. Question mark if's
As known from languages like Java and C++ you can use the write compact if expression in the following form:

 condition ? trueExpr : falseExpr

Some examples of use:

Branching and Looping

21

.var x= true ? "hello" : "goodbye" // Sets x = "hello"

.var y= [20<10] ? 1 : 2 // Sets y=2

.var max = a>b ? a:b

.var debug=true
inc debug ? $d020:$d013 // Increases $d020 since debug=true

.var boolean = max(x,minLimit==null?0:minLimit) // Takes care of null limit

5.4. The .for directive
With the .for directive you can generate loops as in modern programming languages. The .for directive takes

an init expression list, a boolean expression, and an iteration list separated by a semicolon. The last two arguments
and the body are executed as long as the boolean expression evaluates to true.

// Prints the numbers from 0 to 9
.for(var i=0;i<10;i++) .print "Number " + i

// Make data for a sine wave
.for(var i=0;i<256;i++) .byte round(127.5+127.5*sin(toRadians(360*i/256)))

Since argument 1 and 3 are lists, you can leave them out, or you can write several expressions separated by
comma:

// Print the numbers from 0 to 9
.var i=0
.for (;i<10;) {
 .print i
 .eval i++
}

// Sum the numbers from 0 to 9 and print the sum at each step
.for(var i=0, var sum=0;i<10;sum=sum+i,i++)
 .print “The sum at step “ + I “ is “ + sum

With the for loop you can quickly generate tables and unroll loops. You can, for example, do a classic ‘blitter
fill’ routine like this:

.var blitterBuffer=$3000

.var charset=$3800

.for (x=0;x<16;x++) {
 for(var y=0;y<128;y++) {
 if (var y=0) lda blitterBuffer+x*128+y
 else eor blitterBuffer+x*128+y
 sta charset+x*128+y
 }
}

5.5. Optimization Considerations when using Loops
Here is a tip if you want to optimize your assembling. Kick assembler has two modes of executing directives.

‘Function Mode’ is used when the directive is placed inside a function or define directive, otherwise ‘Asm Mode’ is
used. ‘Function Mode’ is executed fast but is restricted to script commands only (.var, .const, .for, etc.), while ‘Asm
Mode’ remembers intermediate results so the assembler won't have to make the same calculations in succeeding
passes.

If you make heavy calculations and get slow performance or lack of memory, then place your for loops inside
a define directive or inside a function. No time or memory will be wasted to record intermediate results, and the
define directive or the directive that called the function, will remember the result in the succeeding passes.

Branching and Looping

22

Read more about the define directive in the section ‘Working with mutable values’.

23

Chapter 6
Data Structures

In the chapter, we will examine user defined data and predefined structures.

6.1. User Defined Structures
It's possible to define your own structures. A structure is a collection of variables like for example a point that

consist of an x and a y coordinate:

// Define a point structure
.struct Point {x,y}

// Create a point with x=1 and y=2 and print it
.var p1 = Point(1,2)
.print ”p1.x=” + p1.x
.print ”p1.y=” + p1.y

// Create a point with the default contructor and modify its arguments
.var p2 = Point()
.eval p2.x =3
.eval p2.y =4

You define a structure with the .struct directive. The above structure has the name ‘Point’ and consists of the
variables x and y. To create an instance of the structure, you use its name as a function. You can either supply
no arguments or give the init values of all the variables. You use the values generated by structures as any other
variables, ex:

 lda #0
 ldy #p1.y
 sta charset+[p1.x>>3]*height,y

You can get access to informations about the struct and access the fields in a more generic way by using the
struct’s functions:

.struct Person{firstName,lastName}

.var p1 = Person(“Peter”,”Schmeichel”)

.print p1.getStructName() // Prints ‘Person’

.print p1.getNoOfFields() // Prints ‘2’

.print p1.getFieldNames().get(0) // Prints ‘firstName’

.eval p1.set(0,”Casper”) // Sets firstName to Casper

.print p1.get(“lastName”) // Prints “Schmeichel”

// Copy values from one struct to another
.var p2 = Person()
.for (var i=0; i<p1.getNoOfFields(); i++)
 .eval p2.set(i,p1.get(i))

// Print the content of a struct:
// firstName = Casper
// lastName = Schmeichel
.for (var i=0; i<p1.getNoOfFields(); i++) {
 .print p1.getFieldNames().get(i) + “ = “ + p1.get(i)
}

Here is a list of the functions defined on struct values:

Data Structures

24

Table 6.1. Struct Value Functions

Functions Description

getStructName() Returns the name of the structure.

getNoOfFields() Returns the number of defined fields.

getFieldNames() Returns a list containing the field names.

get(index) Returns the field value of the field given by an integer
index (0 is the first defined filed).

get(name) Returns the value of the field given by a field name
string.

set(index,value) Sets the value of a field given by an integer index..

set(name,value) Sets the value of a field given by a name.

6.2. List Values
List values are used to hold a list of other values. To create a list you use the ‘List()’ function. It takes one

argument that tells how many elements it contains. If it is left out, the created list will be empty. Use the get and
set operations to retrieve and set elements.

 .var myList = List(2)
 .eval myList.set(0,25)
 .eval myList.set(1, "Hello world")
 .byte myList.get(0) // Will give .byte 25
 .text myList.get(1) // Will give .text "Hello world"

You can determine the number of elements in a list with the size function and the add function adds additional
elements.

 .var greetingsList = List()
 .eval greetingsList.add("Fairlight", "Oxyron", "etc.")
 .byte listSize = greetingsList.size() // gives .byte 3

A compact way to fill a list with elements is:

 .var greetingsList = List().add("Fairlight", "Oxyron", "etc.")

Here is a list of functions defined on list values:

Table 6.2. List Values

Functions Description

get(n) Gets the n’th element (first element starts at zero).

set(n,value) Sets the n’th element (first element starts at zero).

add(value1, value2, …) Add elements to the end of the list.

size() Returns the size of the list.

remove(n) Removes the n’th element.

shuffle() Puts the elements of the list in random order.

reverse() Puts the elements of the list in reverse order.

sort() Sorts the elements of the list (only numeric values are
supported).

Data Structures

25

6.3. Working with Mutable Values
The list value described in the previous chapter is special since it is mutable, which means it can change its

contents. At one point in time a list can contain the values [1,6,7] and at another time [1,4,8,9]. The values previ-
ously described in the manual (Numbers, Strings, Booleans) are immutable since instances like 1, false, or “Hello
World” can’t change. In Kick Assembler 3, you will have to lock mutable values if you want to use them in a pass
different from the one in which they were defined. When a value is locked, it becomes immutable and calling a
function that modifies its content will cause an error. There are two ways to lock a mutable value. You can call
its lock function:

// Locking a list with the lock function
.var list1 = List().add(1,3,5).lock()

Or you can define it inside a .define directive:

// The define directive locks the defined variables outside its scope
.define list2, list3 {
 .var list2 = List().add(1,2)

 .var list3= List()
 .eval list3.add("a")
 .eval list3.add("b")
}
//.eval list3.add("c") // This will give an error

The .define directive defines the symbols that are listed after the .define keyword (list2 and list3). The directives
inside {…} are executed in a new scope so any local defined variables can't be seen from the outside. After
executing the inner directives, the defined values are locked and inserted as constants in the outside scope.

The inner directives are executed in 'function mode', which is a bit faster and requires less memory than ordinary
execution. So if you are using for loops to do some heavy calculations, you can optimize performance by placing
your loop inside a define directive. As the name 'function mode' suggests, directives placed inside functions are also
executed in ‘function mode’. In ‘function mode’ you can only use script directives (like .var, .const, .eval, .enum,
etc) while byte output generating directives (like lda #10, byte $22, .word $33, .fill 10, 0) are not allowed.

6.4. Hashtable Values
Hashtables are tables that map keys to values. You can define a hashtable with the Hashtable() function. To

enter and retrieve values you use the put and get functions, and with the keys function you can retrieve a list of
all keys in the table:

.define ht {
 // Define the table
 .var ht = Hashtable()

 // Enter some values (put(key,value))
 .eval ht.put("ram", 64)
 .eval ht.put("bits", 8)
 .eval ht.put(1, "Hello")
 .eval ht.put(2, "World")
 .eval ht.put("directions", List().add("Up","Down","Left","Right"))
}

// Retrieve the values
.print ht.get(1) // Prints Hello
.print ht.get(2) // Prints World
.print "ram = " + ht.get("ram") + "kb" // Prints ram=64kb

// Print all the keys
.var keys = ht.keys()
.for (var i=0; i<keys.size(); i++) {
 .print keys.get(i) // Prints "ram", "bits", 1, 2, directions

Data Structures

26

}

When a value is used as a key then it is the values string representation that is used. This means that ht.get(“1.0”)
and ht.get(1) returns the same element. If you try to get an element that isn't present in the table, null is returned.

Table 6.3. Hashtable Values

Function Description

put(key,value) Maps 'key' to 'value'. If the key is previously mapped to
a value, the previous mapping is lost.

get(key) Returns the value mapped to 'key'. A null value is re-
turned if no value has been mapped to the key.

keys() Returns a list value of all the keys in the table.

containsKey(key) Returns true if the key is defined in the table, otherwise
false.

remove(key) Removes the key and its value from the table.

27

Chapter 7
Functions and Macros

This chapter shows how to group directives together in units for later execution. In other words, how to define
and use functions, macros and finally pseudo commands which are a special kind of macros.

7.1. Functions
You can define you own functions which you can use like any of the build in library functions. Here is an

example of a function:

.function area(width,height) {
 .return width*height
}
.var x = area(3,2)
lda #10+area(4,8)

Functions consist of non-byte generating directives like .eval, .for, .var, and .if. When the assembler evaluates
the .return directive it returns the value given by the proceeding expression. If no expression is given, or if no .return
directive is reached, a null value is returned. Here are some more examples of functions:

// Returns a string telling if a number is odd or even
.function oddEven(number) {
 .if ([number&1] == 0) .return “even”
 else .return “odd”
}

// Inserts null in all elements of a list
.function clearList(list) {
 // Return if the list is null
 .if (list==null) .return

 .for(var i=0; i<list.size(); i++) {
 list.set(i,null)
 }
}

// Empty function – always returns null
.function emptyFunction() {
}

7.2. Macros
Macros are collections of assembler directives. When called, they generate code as if the directives where

placed at the macro call. The following code defines and executes the macro ‘SetColor’:

// Define macro
.macro SetColor(color) {
 lda #color
 sta $d020
}

// Execute macro
:SetColor(1)

A macro can have any number of arguments. Macro calls are encapsulated in a scope, hence any variable
defined inside a macro can't be seen from the outside. This means that a series of macro calls to the same macro
doesn't interfere:

Functions and Macros

28

// Execute macro
:ClearScreen($0400,$20) // Since they are encapsulated in a scope
:ClearScreen($4400,$20) // the two resulting loop labels don’t
 // interfere

// Define macro
.macro ClearScreen(screen,clearByte) {
 lda #clearByte
 ldx #0
Loop: // The loop label can’t be seen from the outside
 sta screen,x
 sta screen+$100,x
 sta screen+$200,x
 sta screen+$300,x
 inx
 bne Loop
}

Notice that it is ok to use the macro before it is declared.

Macros in Kick Assembler are a little more flexible than ordinary macros. They can call other macros or even
call themselves - Just make sure there is a condition to stop the recursion so you won't get an endless loop.

7.3. Pseudo Commands
Pseudo commands are a special kind of macros that takes command arguments, like #20, table,y or ($30),y as

arguments just like mnemonics do. With these you can make your own extended commands. Here is an example
of a mov command that moves a byte from one place to another:

.pseudocommand mov src;tar {
 lda src
 sta tar
}

You use the mov command like this:

:mov #10 ; $1000 // Sets $1000 to 10 (lda #10, sta $1000)
:mov source ; target // target = source (lda source, sta target)
:mov source,x ; target,y // (lda source,x , sta target,y)
:mov #20 ; ($30),y // (lda #20, sta ($30),y)

The arguments to a pseudo command are separated by semicolon and you can use any argument you would
give to a mnemonic.

The command arguments are passed to the pseudo command as CmdValues. These are values that contain an
argument type and a number value. You access these by their getter functions. Here is a table of the functions:

Table 7.1. CmdValue Functions

Function Description Example

getType() Returns a type constant (See the table
below for possibilities).

#20 will return AT_IMMEDIATE.

getValue() Returns the value. #20 will return 20.

The argument type constants are the following:

Table 7.2. Argument Type Constants

Constant Example

AT_ABSOLUTE $1000

Functions and Macros

29

Constant Example

AT_ABSOLUTEX $1000,x

AT_ABSOLUTEY $1000,y

AT_IMMEDIATE #10

AT_INDIRECT ($1000)

AT_IZEROPAGEX ($10,x)

AT_IZEROPAGEY ($10),y

AT_NONE

Some addressing modes, like absolute zeropage and relative, are missing from the above table. This is because
the assembler automatically detect when these should be used from the corresponding absolute mode.

You can construct new command arguments with the CmdArgument function. If you want to construct a new
immediate argument with the value 100, you do it like this:

.var myArgument = CmdArgument(AT_IMMEDIATE, 100)
lda myArgument // Gives lda #100

Now let’s use the above functionalities to define a 16 bit instruction set. We start by defining a function that
given the first argument will return the next in a 16 bit instruction.

.function 16bitnextArgument(arg) {
 .if (arg.getType()==AT_IMMEDIATE)
 .return CmdArgument(arg.getType(),>arg.getValue())
 .return CmdArgument(arg.getType(),arg.getValue()+1)
}

We always return an argument of the same type as the original. If it's an immediate argument we set the value to
be the high byte of the original value, otherwise we just increment it by 1. This will supply the correct argument for
the ABSOLUTE, ABSOLUTEX, ABSOLUTEY and IMMEDIATE addressing modes. With this we can easily
define some 16 bits commands:

.pseudocommand inc16 arg {
 inc arg
 bne over
 inc 16bitnextArgument(arg)
over:
}

.pseudocommand mov16 src;tar {
 lda src
 sta tar
 lda 16bitnextArgument(src)
 sta 16bitnextArgument(tar)
}

.pseudocommand add16 arg1 ; arg2 ; tar {
 .if (tar.getType()==AT_NONE) .eval tar=arg1
 lda arg1
 adc arg2
 clc
 lda 16bitnextArgument(arg1)
 adc 16bitnextArgument(arg2)
 sta 16bitnextArgument(tar)
}

You can use these like this:

Functions and Macros

30

:inc16 counter
:mov16 #irq1; $0314
:mov16 #startAddress; $30
:add16 $30; #128
:add16 $30; #$1000; $32

Note how the target argument of the add16 command can be left out. When this is the case an argument with
type AT_NONE is passed to the pseudo command and the first argument is then used as target.

With the pseudo command directive you can define your own extended instruction libraries, which speed up
some of the more trivial tasks of programming.

31

Chapter 8
Namespaces

Namespaces are named scopes. When you enclose code in a scope, you hide information about the code for
the outside. This is useful, since labels names won't collide, but sometimes you want to access these anyway. By
using namespaces you can access this information. In this chapter the different uses of namespaces are explained.

8.1. The Namespace Directive
Suppose you want to divide your code into different parts with local labels and variables and want to access to

some of the labels from the outside. This can be done with the .namespace directive:

 jsr part1.init
 jsr part1.exec
 jsr part2.init
 jsr part2.exec
 rts

.namespace part1 {
init:
 ...
 rts

exec:
 ...
 rts
}

.namespace part2 {
init:
 ...
 rts

exec:
 ...
 rts
}

Inside a namespace you reference the labels as usual, but from the outside you append the namespace name as
prefix to the label as seen in the jsr commands. Namespaces can be nested which is seen in the following example:

 jsr part1.section1.exec
 rts

.namespace part1 {

 .namespace section1 {
 exec:
 ...
 rts
 }

 // You don’t have to append part1 here since we are already in
 // the part1 namespace
 jsr section2.exec

 .namespace section2 {
 exec:

Namespaces

32

 ...
 rts
 }
}

User defined labels can be accessed like normal labels, so if you want a constant to be exposed outside of your
namespace then define it as a label:

.namespace vic {
 .label borderColor = $d020
 .label backgroundColor0 = $d021
 .label backgroundColor1 = $d022
 .label backgroundColor2 = $d023
}

 lda #0
 sta vic.backgroundColor0
 sta vic.borderColor

8.2. File Namespaces
If you want the entire sourcefile to be place in a namespace, you can put a .filenamespace directive in the top

of the file.

.filenamespace mySpace
 .pc=$1000
start: inc $d020
 jmp start

It's equivalent to using the .namespace directive but it will save a pair of brackets.

8.3. Label Namespaces
If you declare a scope after a label, the scope will automatically declare a namespace (Autonamespacing). This

is handy if you use scoping to make the labels of your functions local. In the example below the clearScreen label
and the succeeding scope creates a namespace with the name clearScreen.

 lda #’ ‘
 sta clearScreen.fillbyte+1
 jsr clearScreen
 rts

clearScreen: {
fillbyte: lda #0
 ldx #0
loop:
 sta $0400,x
 sta $0500,x
 sta $0600,x
 sta $0700,x
 inx
 bne loop
 rts
}

The above code fills the screen with black spaces. The code that calls the clearScreen subroutine uses the
namespace to access the fillbyte label. If you use the label directive to define the fillbyte label, the code can be
done a little nicer:

 lda #’a’
 sta clearScreen2.fillbyte

Namespaces

33

 jsr clearScreen2
 rts

ClearScreen2: {
 .label fillbyte = *+1
 lda #0
 ldx #0
loop:
 sta $0400,x
 sta $0500,x
 sta $0600,x
 sta $0700,x
 inx
 bne loop
 rts
}

Now you don't have to remember to add one to the address before storing the fill byte. Autonamespacing works
with both normal labels and the label directive, so its also possible to write programs like this:

.label mylabel1= $1000 {
 .label mylabel2 = $1234
}
.print “mylable2=”+mylabel1.mylabel2

8.4. Accessing Local Labels of Macros and Pseudocommands
Autonamespacing makes it possible to access local labels of executed Macros and pseudocommands as demon-

strated in the following program:

.pc=$1000

start:
 inc c1.color
 dec c2.color
c1: :setColor()
c2: :setColor()
 jmp start

.macro setColor() {
 .label color = *+1
 lda #0
 sta $d020
}

34

Chapter 9
Import and Export

In this chapter we will look at other ways to get data in and out of Kick Assembler.

9.1. Passing Command Line Arguments to the Script
From the command line you can assign string values to variables, which can be read from the script. This is

done with the ‘:’ notation like this:

java –jar KickAss.jar mySource.asm :x=27 :sound=true :title=”Beta 2”

The three variables x, sound and beta2 and their string values will now be placed in a hashtable that can be
accessed by the global variable cmdLineVars:

.print “version =” + cmdLineVars.get(“version”)

.var x= cmdLineVars.get(“x”).asNumber()

.var y= 2*x

.var sound = cmdLineVars.get(”sound”).asBoolean()

.if (sound) jsr $1000

9.2. Import of Binary Files
It's possible to load any file into a variable. This is done with the LoadBinary function. To extract bytes of

the file from the variable you use the get function. You can also get the size of the file with the getSize function.
Here is an example:

// Load the file into the variable ’data’
.var data = LoadBinary("myDataFile")

// Dump the data to the memory
myData: .fill data.getSize(), data.get(i)

When you know the format of the file, you can supply a template string that describes the memory blocks.
Each block is given a name and a start address relative to the start of the file. When you supply a template to the
LoadBinary function, the returned value will contain a get and a size function for each memory block:

.var dataTemplate = "Xcoord=0,Ycoord=$100, BounceData=$200"

.var file = LoadBinary(“moveData”, dataTemplate)
Xcoord: .fill file.getXCoordSize(), file.getXCoord(i)
Ycoord: .fill file.getYCoordSize(), file.getYCoord(i)
BounceData: .fill file.getBounceDataSize(), file.getBounceData(i)

There is a special template tag named ‘C64FILE’ that is used to load native c64 files. When this is in the
template string, the LoadBinary function will ignore the two first byte of the file, since the first two bytes of a
C64 file are used to tell the loader the start address of the file. Here is an example of how to load and display a
Koala Paint picture file:

.const KOALA_TEMPLATE = "C64FILE, Bitmap=$0000, ScreenRam=$1f40, ColorRam=$2328,
 BackgroundColor = $2710"
.var picture = LoadBinary("picture.prg", KOALA_TEMPLATE)

 .pc = $0801 "Basic Program"
 :BasicUpstart($0810)

 .pc =$0810 "Program"
 lda #$38

Import and Export

35

 sta $d018
 lda #$d8
 sta $d016
 lda #$3b
 sta $d011
 lda #0
 sta $d020
 lda #picture.getBackgroundColor()
 sta $d021
 ldx #0
!loop:
 .for (var i=0; i<4; i++) {
 lda colorRam+i*$100,x
 sta $d800+i*$100,x
 }
 inx
 bne !loop-
 jmp *

.pc = $0c00 .fill picture.getScreenRamSize(), picture.getScreenRam(i)

.pc = $1c00 colorRam: .fill picture.getColorRamSize(), picture.getColorRam(i)

.pc = $2000 .fill picture.getBitmapSize(), picture.getBitmap(i)

Notice how easy it is to reallocate the screen and color ram by combining the .pc and .fill directives. To avoid
typing in format types too often, Kick Assembler has some build in constants you can use:

Table 9.1. BinaryFile Constants

Binary format constant Blocks Description

BF_C64FILE A C64 file (The two first bytes are
skipped)

BF_BITMAP_SINGLECOLOR ColorRam,ScreenRam,Bitmap The Bitmap single color format out-
putted from Timanthes.

BF_KOALA Bitmap,ScreenRam,ColorRam,BackgroundColorFiles from Koala Paint

BF_FLI ColorRam,ScreenRam,Bitmap Files from Blackmails FLI editor.

So if you want to load a FLI picture, just write

.var fliPicture = LoadBinary("GreatPicture", BF_FLI)

The formats were chosen so they cover the outputs of Timanthes (NB. Timanthes doesn’t save the background
color in koala format, so if you use that you will get an overflow error).

TIP: If you want to know how data is placed in the above formats, just print the constant to the console while
assembling. Example:

.print "Koala format="+BF_KOALA

9.3. Import of SID Files
The script language knows the format of SID files. This means that you can import files directly from the HVSC

(High Voltage Sid Collection) which uses this format. To do this you use the LoadSid function which returns a
value that represents the sidfile.

.var music = LoadSid("C:/c64/HVSC_44-all-of-them/C64Music/Tel_Jeroen/
Closing_In.sid")

Import and Export

36

From this you can extract data such as the init address, the play address, info about the music and the song data.

Table 9.2. SIDFileValue Properties

Attribute/Function Description

header The sid file type (PSID or RSID)

version The header version

location The location of the song

init The address of the init routine

play The address of the play routine

songs The number of songs

startSong The default song

name A string containing the name of the module

author A string containing the name of the author

copyright A string containing copyright information

speed The speed flags (Consult the Sid format for details)

flags flags (Consult the Sid format for details)

startpage Startpage (Consult the Sid format for details)

pagelength Pagelength (Consult the Sid format for details)

size The data size in bytes

getData(n) Returns the n'th byte of the module. Use this function
together with the size variable to store the modules bi-
nary data into the memory.

Here is an example of use:

//---
//---
// SID Player
//---
//---
.var music = LoadSid("Nightshift.sid")
:BasicUpstart2(start)
start:
 lda #$00
 sta $d020
 sta $d021
 ldx #0
 ldy #0
 lda #music.startSong-1
 jsr music.init
 sei
 lda #<irq1
 sta $0314
 lda #>irq1
 sta $0315
 asl $d019
 lda #$7b
 sta $dc0d
 lda #$81
 sta $d01a
 lda #$1b
 sta $d011
 lda #$80
 sta $d012

Import and Export

37

 cli
this: jmp this
//---
irq1:
 asl $d019
 inc $d020
 jsr music.play
 dec $d020
 pla
 tay
 pla
 tax
 pla
 rti
//---
.pc=music.location "Music"
.fill music.size, music.getData(i)

//--
// Print the music info while assembling
.print ""
.print "SID Data"
.print "--------"
.print "location=$"+toHexString(music.location)
.print "init=$"+toHexString(music.init)
.print "play=$"+toHexString(music.play)
.print "songs="+music.songs
.print "startSong="+music.startSong
.print "size=$"+toHexString(music.size)
.print "name="+music.name
.print "author="+music.author
.print "copyright="+music.copyright

.print ""

.print "Additional tech data"

.print "--------------------"

.print "header="+music.header

.print "header version="+music.version

.print "flags="+toBinaryString(music.flags)

.print "speed="+toBinaryString(music.speed)

.print "startpage="+music.startpage

.print "pagelength="+music.pagelength

Assembling the above code will create a musicplayer for the given sidfile and print the information in the music
file while assembling:

 SID Data

 location=$1000
 init=$1d70
 play=$1003
 songs=1.0
 startSong=1.0
 size=$d78
 name=Nightshift
 author=Ari Yliaho (Agemixer)
 copyright=2001 Scallop

 Additional tech data

 header=PSID
 header version=2.0
 flags=100100
 speed=0

Import and Export

38

 startpage=0.0

TIP: If you use the –libdir option to point to your HVSC main directory, you don’t have to write long filenames.
For example:

.var music = LoadSid("C:/c64/HVSC_44-all-of-them/C64Music/Tel_Jeroen/
Closing_In.sid")

will be

.var music = LoadSid("Tel_Jeroen/Closing_In.sid")

9.4. Converting Graphics
Kick Assembler makes it easy to convert graphics from gif and jpg files to the basic C64 formats. A picture

can be loaded into a picture value by the LoadPicture function. The picture value can then be accessed by various
functions depending on which format you want. The following will place a single color logo in a standard 32x8
char matrix charset placed at $2000.

.pc = $2000

.var logo = LoadPicture("CML_32x8.gif")

.fill $800, logo.getSinglecolorByte([i>>3]&$1f, [i&7] | [i>>8]<<3)

If you don't like the compact form of the .fill command you can use a for loop instead. The following will
produce the same data:

.pc = $2000

.var logo = LoadPicture("CML_32x8.gif")

.for (var y=0; y<8; y++)
 .for (var x=0;x<32; x++)
 .for(var charPosY=0; charPosY<8; charPosY++)
 .byte logo.getSinglecolorByte(x,charPosY+y*8)

The LoadPicture can take a color table as the second argument. This is used to decide which bit pattern is
produced by a pixel. In single color mode there are two bit patters (%0 and %1) and multi color mode has four
(%00, %01, %10 and %11). If you don’t specify a color table, a default table is created based on the colors in the
picture. However, normally you wish to control which color is mapped to a bit pattern. The following shows how
to convert a picture to a 16x16 multi color char matrix charset:

.pc = $2800 “Logo”

.var picture = LoadPicture("Picture_16x16.gif",
 List().add($444444, $6c6c6c,$959595,$000000))
.fill $800, picture.getMulticolorByte(i>>7,i&$7f)

The four colors added to the list are the RGB values for the colors that are mapped to each bit pattern.

Finally the picture value contains a getPixel function from which you can get the RGB color of a pixel. This
comes in handy when you want to make your own format for some special purpose.

Attributes and functions available on picture values:

Table 9.3. PictureValue Functions

Attribute/Function Description

width Returns the width of the picture in pixels.

height Returns the height of the picture in pixels.

getPixel(x,y) Returns the RGB value of the pixel at position x,y. Both
x and y are given in pixels.

Import and Export

39

Attribute/Function Description

getSinglecolorByte(x,y) Converts 8 pixels to a single color byte using the color
table. X is given as a byte number (= pixel position/8)
and y is given in pixels.

getMulticolorByte(x,y) Converts 4 pixels to a multi color byte using the color ta-
ble. X is given as a byte number (= pixel position/8) and
y is given in pixels. (NB. This function ignores every
second pixel since the C64 multi color format is half the
resolution of the single color.)

9.5. Writing to User Defined Files
With the createFile function you can create/overwrite a file on the disk. You call it with a file name and it

returns a value that can be used to write data to the file:

.var myFile = createFile("breakpoints.txt")

.eval myFile.writeln("Hello World")

IMPORTANT! For security reasons, you will have to use the –afo switch on the command line otherwise file
generation will be blocked. Eg “java –jar KickAss.jar source.asm -afo” will do the trick.

File creation is useful for generating extra data for emulators. The following example shows how to generate
a file with breakpoint for VICE:

.var brkFile = createFile("breakpoints.txt")

.macro break() {
 .eval brkFile.writeln(“break “ + toHexString(*))
}

.pc=$0801 “Basic”
:BasicUpstart (start)

.pc=$1000 "Code"
start:
 inc $d020
 :break()
 jmp start

When running VICE with the breakpoint file (use the –moncommands switch), VICE will run until the break
and then exit to the monitor.

Here is a list of the functions on a file value:

Table 9.4. FileValue Functions

Attribute/Function Description

Attribute/Function Description.

writeln(text) Writes the ‘text’ to the file and insert a line shift.

writeln() Insert a line shift.

9.6. Exporting Labels to other Sourcefiles
By using the –symbolfile option at the commandline it’s possible export all the assembled symbols. The line

java –jar KickAss.jar source1.asm –symbolfile

will generate the file source1.sym while assembling. Lets say the content of source1 is:

Import and Export

40

.filenamespace source1

.pc =$2000
clearColor:
 lda #0
 sta $d020
 sta $d021
 rts

The content of source1.sym will be:

.namespace source1 {
 .label clearColor = $2000
}

It's now possible to refer to the labels of source1.asm from another file just by importing the .sym file:

.import source “source1.sym”
jsr source1.clearColor

9.7. Exporting Labels to VICE
By using the –vicesymbols option you can export the labels to a .vs file that can be read by the VICE emulator.

For example:

java –jar KickAss.jar source1.asm –vicesymbols

41

Chapter 10
Modifiers

With modifiers, you can modify assembled bytes before they are stored to the target file. It could be you want
to encrypt, pack or crunch the bytes. Currently, the only way to create a modifier is to implement a java plugin
(See the plugin chapter).

10.1. Modify Directives
You can modify the assembled bytes of a limited block or of the whole source file. To modify the whole source

file use the .filemodify directive at the top of the file. The following modifies the whole file with the modifier
‘MyModifier’ called with the parameter 25.

.filemodify MyModifier(25)

To modify a limited block you use the .modify directive:

.modify MyModifier() {
 .pc =$8080
main:
 inc $d020
 dec $d021
 jmp main

 .pc =$1000
 .fill $100, i
}

42

Chapter 11
Special Features

Misc features

11.1. Basic Upstart Program
To make the assembled machine code run on a C64 or in an emulator, it's useful to include a little basic program

that starts your code (for example: 10 sys 4096). The BasicUpstart macro is standard macro that helps you to create
programs like that. The following program shows how it’s used:

.pc = $0801 "Basic Upstart"
:BasicUpstart(start) // 10 sys$0810

.pc =$0810 "Program"
start:
 inc $d020
 inc $d021
 jmp start

TIP: Insert at basic upstart program in the start of your programs and use the –execute option to start Vice. This
will automatically load and execute your program in Vice after successful assembling.

There is a second variation of the basic upstart macro that also takes care of setting up memory blocks:

:BasicUpstart2(start) // 10 sys$0810
start:
 inc $d020
 inc $d021
 jmp start

If you want to see the script code for the macros, you can look in the autoinclude.asm file in the KickAss.jar file.

11.2. Opcode Constants
When making self modifying code or code that unrolls speed code, you have to know the value of the opcodes

involved. To make this easier, all the opcodes have been given their own constant. The constant is found by writing
the mnemonic in uppercase and appending the addressing mode. For example, the constant for a rts command is
RTS and ‘lda #0’ is LDA_IMM. So, to place an rts command at target you write:

 lda #RTS
 sta target

You get the size of a mnemonic by using the asmCommandSize command

.var rtsSize = asmCommandSize(RTS) //rtsSize=1

.var ldaSize1 = asmCommandSize(LDA_IMM) //ldaSize1=2

.var ldaSize2 = asmCommandSize(LDA_ABS) //ldaSize2=3

Here are a list of the addressing modes and constant examples:

Table 11.1. Addressing Modes

Argument Description Example constant Example command

None RTS rts

IMM Immediate LDA_IMM lda #$30

ZP Zeropage LDA_ZP lda $30

Special Features

43

Argument Description Example constant Example command

ZPX Zeropage,x LDA_ZPX lda $30,x

ZPY Zeropage,y LDX_ZPY ldx $30,y

IZPX Indirect zeropage,x LDA_IZPX lda ($30,x)

IZPY Indirect zeropage,y LDA_IZPY lda ($30),y

ABS Absolute LDA_ABS lda $1000

ABSX Absolute,x LDA_ABSX lda $1000,x

ABSY Absolute,y LDA_ABSY lda $1000,y

IND Indirect JMP_IND jmp ($1000)

REL Relative BNE_REL bne loop

11.3. Colour Constants
Kick Assembler has build in the C64 colour constants:

Table 11.2. Colour Constants

Constant Value

BLACK 0

WHITE 1

RED 2

CYAN 3

PURPLE 4

GREEN 5

BLUE 6

YELLOW 7

ORANGE 8

BROWN 9

LIGHT_RED 10

DARK_GRAY/DARK_GREY 11

GRAY/GREY 12

LIGHT_GREEN 13

LIGHT_BLUE 14

LIGHT_GRAY/LIGHT_GREY 15

Example of use:

 lda #BLACK
 sta $d020
 lda #WHITE
 sta $d021

11.4. Making 3D Calculations
To make it easy to to make 3D Calculations, Kick Assembler supports vector and matrix values.

Vector values are used to hold 3D vectors. They are created by the Vector function that takes x, y and z as
argument:

Special Features

44

.var v1 = Vector(1,2,3)

.var v2 = Vector(0,0,2)

You can access the coordinates of the vector by its get functions and do the most common vector operations
by the assigned functions. Here are some examples:

.var v1PlusV2 = v1+v2

.print "V1 scaled by 10 is " + [v1*10]

.var dotProduct = v1*v2

Here is a list of vector functions and operators:

Table 11.3. Vector Value Functions

Function/Operator Example Description

get(n) Returns the n'th coordinate (x=0,
y=1, z=2).

getX() Returns the x coordinate.

getY() Returns the y coordinate.

getZ() Returns the z coordinate.

+ Vector(1,2,3)+Vector(2,3,4) Returns the sum of two vectors.

- Vector(1,2,3)-Vector(2,3,4) Returns the result of a subtraction be-
tween the two vectors.

* Number Vector(1,2,3)* 4.2 Return the vector scaled by a num-
ber.

* Vector Vector(1,2,3)*Vector(2,3,4) Returns the dot product.

/ Vector(1,2,3)/2 Divides each coordinate by a factor
and returns the result.

X(v) Vector(0,1,0).X(Vector(1,0,0)) Returns the cross product between
two vectors.

The matrix value represents a 4x4 matrix. You create it by using the Matrix function, or one of the other
constructor functions described later. You access the entries of the matrix by using its get and set functions:

.var matrix = Matrix() // Creates an identity matrix

.eval matrix.set(2,3,100)

.print "Matrix.get(2,3)=" + matrix.get(2,3)

.print "The entire matrix=" + matrix

In 3d graphics matrixes are usually used to describe a transformation of a vector space. That can be to move
the coordinates, to scale them, to rotate then, etc. The Matrix() operator creates an identity matrix, which is one
that leaves the coordinates unchanged. By using the set function you can construct any matrix you like. However,
Kick Assembler has constructor functions that create the most common transformation matrixes:

Table 11.4. Matrix Value Constructors

Function Description

Matrix() Creates an identity matrix.

RotationMatrix(aX,aY,aZ) Creates a rotation matrix where aX, aY and aZ are the
angles rotated around the x, y and z axis. The angles are
given in radians.

ScaleMatrix(sX,sY,sZ) Creates a scale matrix where the x coordinate is scaled
by sX, the y-coordinate by sY and the z-coordinate by
sZ.

Special Features

45

Function Description

MoveMatrix(mX,mY,mZ) Creates a move matrix that moves mX along the x-axis,
mY along the y-axis and mZ along the z-axis.

PerspectiveMatrix(zProj) Creates a perspective projection where the eye-point is
placed in (0,0,0) and coordinates are projected on the
XY-plane where z=zProj.

You can multiply the matrixes and thereby combine their transformations. The transformation is read from
right to left, so if you want to move the space 10 along the x axis and then rotate it 45 degrees around the z-
axis, you write:

.var m = RotationMatrix(0,0,toRadians(45))*MoveMatrix(10,0,0)

To transform a coordinate you multiply the matrix to transformed vector:

.var v = m*Vector(10,0,0)

.print "Transformed v=" + v

The functions defined on matrixes are the following:

Table 11.5. Matrix Value Functions

Function/Operator Example Description

get(n,m) Gets the value at n,m.

set(n,m,value) Sets the value at n,m.

*Vector Matrix()*Vector(1,2,3) Return the product of the matrix and
a vector.

*Matrix Matrix()*Matrix() Returns the product of two matrixes.

Here is a little program to illustrate how matrixes can be used. It pre calculates an animation of a cube that rotates
around the x, y and z-axis and is projected on the plane where z=2.5. The data is placed at the label ‘cubeCoords’:

//--
// Objects
//--
.var Cube = List().add(
 Vector(1,1,1), Vector(1,1,-1), Vector(1,-1,1), Vector(1,-1,-1),
 Vector(-1,1,1), Vector(-1,1,-1), Vector(-1,-1,1), Vector(-1,-1,-1))

//--
// Macro for doing the precalculation
//--
.macro PrecalcObject(object, animLength, nrOfXrot, nrOfYrot, nrOfZrot) {

 // Rotate the coordinate and place the coordinates of each frams in a list
 .var frames = List()
 .for(var frameNr=0; frameNr<animLength;frameNr++) {
 // Set up the transform matrix
 .var aX = toRadians(frameNr*360*nrOfXrot/animLength)
 .var aY = toRadians(frameNr*360*nrOfYrot/animLength)
 .var aZ = toRadians(frameNr*360*nrOfZrot/animLength)
 .var zp = 2.5 // z-coordinate for the projection plane
 .var m = ScaleMatrix(120,120,0)*
 PerspectiveMatrix(zp)*
 MoveMatrix(0,0,zp+5)*
 RotationMatrix(aX,aY,aZ)

Special Features

46

 // Transform the coordinates
 .var coords = List()
 .for (var i=0; i<object.size(); i++) {
 .eval coords.add(m*object.get(i))
 }
 .eval frames.add(coords)
 }

 // Dump the list to the memory
 .for (var coordNr=0; coordNr<object.size(); coordNr++) {
 .for (var xy=0;xy<2; xy++) {
 .fill animLength, $80+round(frames.get(i).get(coordNr).get(xy))
 }
 }
}
//--
// The vector data
//--
.align $100
cubeCoords: :PrecalcObject(Cube,256,2,-1,1)
//--

47

Chapter 12
Testing

Kick Assembler has .assert directives that are useful for testing. They were made to make it easy to test the
assembler itself, but you can use them for testing your own pseudo-commands, macros, functions. When assertions
are used, the assembler will automatically count the number of assertions and the number of failed assertions and
display these when the assembling has finished.

12.1. Asserting expressions
With the assert directive you can test the value of expressions. It takes three arguments: a description, an

expression, and an expected result.

.assert "2+5*10/2", 2+5*10/2, 27

.assert "2+2", 2+2, 5

.assert "Vector(1,2,3)+Vector(1,1,1)", Vector(1,2,3)+Vector(1,1,1), Vector(2,3,4)

When assembling this code the assembler prints the description, the result of the expression and the expected
result. If these don’t match an error message is appended:

2+5*10/2=27.0 (27.0)
2+2=4.0 (5.0) – ERROR IN ASSERTION!!!
Vector(1,2,3)+Vector(1,1,1)=(2.0,3.0,4.0) ((2.0,3.0,4.0))

12.2. Asserting errors in expressions
To make sure that an expression gives an error when the user gives the wrong parameters to a function, use

the .asserterror directive:

.asserterror "Test1" , 20/10

.asserterror "Test2" , 20/false

In the above example test1 will fail since its perfectly legal to divide 20 by 10. Test2 will produce the expected
error so this assertion is ok. The above will give the following output:

Test1 – ERROR IN ASSERTION!
 Test2 – OK. | Can’t get a numeric representation from a value of type boolean

12.3. Asserting code
The assert directive has a second form which makes it possible to compare pieces of assembled code:

.assert "Test2", { lda $1000 }, {ldx $1000}

.assert "Test", {
 .for (var i=0; i<4; i++)
 sta $0400+i
}, {
 sta $0400
 sta $0401
 sta $0402
 sta $0403
}

The assert directive will give an ok or failed message and the assembled result as output. The output of the
above example is as follows:

Testing

48

 Test1 – FAILED! | 2000:ad,00,10 -- 2000:ae,00,10
 Test2 – OK. | 2000:8d,00,04,8d,01,04,8d,02,04,8d,03,04

12.4. Asserting errors in code
Like the assert directive the asserterror directive also has a form that can assert code:

.asserterror “Test” , { lda #”This must fail”}

Output:

Test – OK. | The value of a Command Argument Value must be an integer. Can’t get an
 integer from a value of type ‘string’

49

Chapter 13
3rd Party Java plugins

It's possible to write you own plugins for Kick Assembler. Currently the following types of plugins are sup-
ported:

• Macro Plugins - Implements macros

• Modify Plugins – Implements modifiers

• Archive Plugins – Used to group the above plugins in one unit

13.1. The Test Project
Before going any further I suggest you download the plugin development test eclipse project from the Kick

Assembler website.

To use it do the following:

1. Create an Eclipse workspace.

2. ’Import->Existing Projects into workspace->Select archive file’ and select the downloaded project file.

3. Replace the KickAss.jar file in the jars folder with the newest version, if necessary.

You are now ready to start. In the src folder you can see examples of how the plugins are made. The files in
PluginTest shows how to use them and in the launch folder is launch files for running the examples (Rightclick-
>Run As).

13.2. Registering your Plugins
To work with plugins you should do two things. When assembling you should make your compiled java class

visible from the java classpath. If you are using eclipse to run your Kick Assembler, like in the example project,
you don’t have to worry about this. If you are using the command line you will have to set either the classpath
environment variable or use the classpath option of the java command.

Secondly you should tell Kick Assembler about your plugin. There are two ways to do this. If your plugin is
only used in one of your projects, you should use the .plugin directive. Eg:

.plugin "test.plugins.macros.MyMacro"

If the plugin should be available every time you use Kick Assembler, you place the class name in a line in the
file ‘KickAss.plugin’ which should be placed in the same locations as the KickAss.jar. Using // in the start of the
line makes it a comment. Example of a KickAss.plugin file:

// My macro plugins
test.plugins.macros.MyMacro1
test.plugins.macros.MyMacro2
test.plugins.macros.MyMacro3

13.3. Macro Plugins
Macro plugins a java classes that implements the IMacro interface:

public interface IMacro {
 String getName();
 byte[] execute(IValue[] parameters, IEngine engine);
}

A simple example of a macro is:

3rd Party Java plugins

50

import cml.kickass.plugins.interf.*;

public class MyMacro implements IMacro{
 @Override
 public String getName() {
 return "MyMacro";
 }

 @Override
 public byte[] execute(IValue[] parameters, IEngine engine) {
 engine.print(“Hello world from MyMacro!”);
 return new byte[0];
 }
}

You execute it as a normal macro:

.plugin "test.plugins.macros.MyMacro"
:MyMacro()

And get the expected output ‘Hello World from MyMacro!’. The ‘arguments’ parameter is the parameters
parsed to the macro. The result is returned as a byte array and the ‘engine’ parameter is used to do additional
communication with the Kick Assembler engine. The interfaces of the two parameters are described in the fol-
lowing sections.

13.4. The IValue Interface
Objects that implements the interface IValue represents values like numbers, strings and booleans. The IValue

interface contains the following methods to extract information from the value:

Table 13.1. IValue Interface

Method Description

int getInt(); Gets an integer from the value if possible, otherwise it
will give an error message.

Double getDouble(); Gets a double from the value if possible, otherwise it
will give an error message.

String getString(); Gets a string from the value if possible, otherwise it will
give an error message.

Boolean getBoolean(); Gets a Boolean from the value if possible, otherwise it
will give an error message.

List<IValue> getList(); Gets at list of values if possible, otherwise it will give an
error message. The list implements size(), get(i), isEmp-
ty() and iterator().

Boolean hasIntRepresentation(); Tells if you can get an integer from the value. Every
number value can produce an integer. 3.2 will produce
3).

boolean hasDoubleRepresentation(); Tells if you can get a double from the value.

boolean hasStringRepresentation(); Tells if you can get a string from the value.

boolean hasBooleanRepresentation(); Tells if you can get a boolean from the value.

boolean hasListRepresentation(); Tells if you can get a list from the value.

13.5. The IEngine Inteface
The IEngine interface is used to do additional communication to Kick Assembler. It has the following methods:

3rd Party Java plugins

51

Table 13.2. IEngine Interface

Method Description

File getFile(String filename); Opens a file with the given filename. The assembler will
look for the file as it would look for a soucecode file.
If it isn’t present in the current directory, it will look in
the library directories. It will return null if the file can’t
be found.

File getCurrentDirectory(); Gets the current directory.

void print(String message); Prints a message to the screen. Works like the .print di-
rective.

void printNow(String message); Prints a message to the screen. Works like the .printnow
directive.

void error(String message); Prints an error message and stops execution. Works like
the .error directive. Important! This method will throw
an AsmException which you have to pass through any
try-catch block used in your code.

13.6. Modifyer Plugins
You can implement modifiers the same way as macros (See the modifier chapter for an explanation for these).

The interface looks like this:

public interface IModifier {
 public String getName();
 byte[] execute(List<IMemoryBlock> memoryBlocks, IValue[] parameters, IEngine
 engine);
}

The only difference from the macro interface is the list of memory blocks. These are the blocks defined inside
the modify directive. The memory block objects contain the following functions:

Table 13.3. IMemoryBlock Interface

Method Description

int getStartAddress() The start address of the memory block.

byte[] getBytes() The assembled bytes of the memory block.

13.7. Plugin Archives
You can collect more plugins in one archive. The makes it possible to register them with only one plugin

directive. To create an archive you implement a class of the IArchive interface:

public interface IArchive {
 public List<Object> getPluginObjects();
}

An implementation could look like this:

public class MyArchive implements IArchive{
 @Override
 public List<Object> getPluginObjects() {
 List<Object> list = new ArrayList<Object>();
 list.add(new MyMacro());
 list.add(new MyModifyer());
 return list;
 }
}

3rd Party Java plugins

52

The following plugin directive will then register both MyMacro and MyModifyer.

.plugin "test.plugins.archives.MyArchive"

53

Appendix A. Quick Reference
A.1. Command Line Options

Table A.1. Command Line Options

Option Example Description

-o -o dots.prg Sets the output file. Default is the in-
put filename with a ‘.prg’ as suffix.

-libdir -libdir ../stdLib Defines a library where the assem-
bler will look when it tries to open
external files.

-showmem -showmem Show a memory map after assem-
bling.

-execute -execute "x64 +sound" Execute a given program with the as-
sembled file as argument. You can
use this to start a C64 emulator with
the assembled program if the assem-
bling is successful.

-warningsoff -warningsoff Turns off warning messages.

-log -log logfile.txt Prints the output of the assembler to
a logfile.

-dtv -dtv Enables DTV opcodes.

-aom -aom Allow overlapping memory blocks.
With this option, overlapping memo-
ry blocks will produce a warning in-
stead of an error.

-time -time Displays the assemble time.

-vicesymbols -vicesymbols Generates a label file for VICE.

-binfile -binfile Sets the output to be a bin file instead
of a prg file. The difference between
a bin and a prg file is that the bin file
doesn’t contain the two start address
bytes.

-afo -afo Allows file output to user defined
files

:name=value :x=34 :version=beta2 :path="c:/C
64/"

The ‘:’ notation denotes string vari-
ables passed to the script. They
can be accessed by using the ‘cmd-
LineVars’ hashtable which is avail-
able from the script.

-symbolfile -symbolfile Genrates a .sym file with the re-
solved symbols. The file can be used
in other sources with the .import
source directive.

-symbolfiledir -symbolfiledir sources/symbolfiles Specifies the folder in which the
symbolfile is written. If none is giv-
en, its written next to the sourcefile.

-fillbyte -fillbyte 255 Sets the byte used to fill the space be-
tween memoryblocks in the prg file.

Quick Reference

54

Option Example Description

-maxaddr -maxaddr 8191 Sets the upper limit for the memory,
default is 65535. Setting a negative
value means unlimited memory.

-mbfiles -mbfiles One file will be saved for each mem-
ory block instead of one big file.

A.2. Assembler Directives
Will come later..

A.3. Value Types
Will come later...

55

Appendix B. Technical Details
In Kick Assembler 3 some rather advanced techniques have been implemented to make the assembling more

flexible and correct. I'll describe some of the main points here. YOU DON'T NEED TO KNOW THIS, but if you
are curious about technical details then read on.

B.1. The flexible Parse Algorithm
Kick Assembler 3 uses a flexible pass algorithm, which parses each assembler command or directive as much

as possible in each pass. Some commands can be finished in first pass, such as lda #10 or sta $1000. But if a
command depends on information not yet given, like ‘jmp routine’ where the routine label hasn't been defined yet,
an extra pass is required. Kick Assembler keeps executing passes until the assembling is finished or no progress
has been made. You can write programs that only need one pass, but most programs will need two or more. This
approach is more flexible and gives advantages over normal fixed pass assembling. All directives don't have to be
in the same phase of assembling, which gives some nice possibilities for future directives.

B.2. Recording of Side Effects
Side effects of directives are now recorded and replayed the subsequent passes. Consider the following eval

directive: .eval a=[5+8/2+1]*10.In the first pass the calculation [5+8/2 + 1]*10 will be executed and find the result
100, which will be assigned to a. In the next pass no calculation is done, only the side effect (a=100) is executed.
This speeds up programs with heavy scripting, since the script only has to execute once.

B.3. Function Mode and Asm Mode
Kick assembler has two modes for executing directives. ‘Function Mode’ is used when the directive is placed

inside a function or .define directive, otherwise ‘Asm Mode’ is used. ‘Function Mode’ is executed fast but is
restricted to script commands only (.var, .const, .for, etc.), while ‘Asm Mode’ can handle all directives and records
the side effects as described in previous section. All evaluation starts in ‘Asm Mode’ and enters ‘Function Mode’
if you get inside the body a function or .define directive. This means that at some point there is always a directive
that records the result of the evaluation.

B.4. Invalid Value Calculations
Invalid values occur when the information used to calculate a value that isn't available yet. Usually this starts

with an unresolved label value, which is defined later in the source code. Normally you would stop assembling
the current directive once you reach an invalid value, but that might leave out some side effects you did intend
to happen, so instead of stopping, the assembler now carries on operating on the invalid values. So an unresolved
label is just an unresolved Number value. If you add two number values and one of them is invalid then the result
will be another invalid number value. If you compare two invalid numbers then you get an invalid boolean and
so forth. This helps to track down which values to invalidate. If for example you use an invalid number as index
in a set function on a list, you must invalidate the whole list since you don't know which element is overwritten.
Some examples of invalid value calculations:

4+InvalidNumber -> InvalidNumber
InvalidNumber != 5 -> InvalidBoolean
myList.set(3, InvalidNumber) -> [?,?,InvalidNumber]
myList.set(InvalidNumber, “Hello”) -> InvalidList
myList.set(4+4*InvalidNumber, “Hello”) -> InvalidList

	Kick Assembler Manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	2.1. Running the Assembler
	2.2. An Example Interrupt
	2.3. Configuring the Assembler

	Chapter 3. Basic Assembler Functionality
	3.1. Mnemonics
	3.2. Argument Types
	3.3. Number formats
	3.4. Labels and Multi Labels
	3.5. Memory Directives
	3.6. Data Directives
	3.7. Import Directives
	3.8. Comments
	3.9. Console Output

	Chapter 4. Introducing the Script Language
	4.1. Expressions
	4.2. Variables, Constants and User Defined Labels
	4.3. Scoping
	4.4. Numeric Values
	4.5. Parentheses
	4.6. String Values
	4.7. Char Values
	4.8. The Math Library

	Chapter 5. Branching and Looping
	5.1. Boolean Values
	5.2. The .if directive
	5.3. Question mark if's
	5.4. The .for directive
	5.5. Optimization Considerations when using Loops

	Chapter 6. Data Structures
	6.1. User Defined Structures
	6.2. List Values
	6.3. Working with Mutable Values
	6.4. Hashtable Values

	Chapter 7. Functions and Macros
	7.1. Functions
	7.2. Macros
	7.3. Pseudo Commands

	Chapter 8. Namespaces
	8.1. The Namespace Directive
	8.2. File Namespaces
	8.3. Label Namespaces
	8.4. Accessing Local Labels of Macros and Pseudocommands

	Chapter 9. Import and Export
	9.1. Passing Command Line Arguments to the Script
	9.2. Import of Binary Files
	9.3. Import of SID Files
	9.4. Converting Graphics
	9.5. Writing to User Defined Files
	9.6. Exporting Labels to other Sourcefiles
	9.7. Exporting Labels to VICE

	Chapter 10. Modifiers
	10.1. Modify Directives

	Chapter 11. Special Features
	11.1. Basic Upstart Program
	11.2. Opcode Constants
	11.3. Colour Constants
	11.4. Making 3D Calculations

	Chapter 12. Testing
	12.1. Asserting expressions
	12.2. Asserting errors in expressions
	12.3. Asserting code
	12.4. Asserting errors in code

	Chapter 13. 3rd Party Java plugins
	13.1. The Test Project
	13.2. Registering your Plugins
	13.3. Macro Plugins
	13.4. The IValue Interface
	13.5. The IEngine Inteface
	13.6. Modifyer Plugins
	13.7. Plugin Archives

	Appendix A. Quick Reference
	A.1. Command Line Options
	A.2. Assembler Directives
	A.3. Value Types

	Appendix B. Technical Details
	B.1. The flexible Parse Algorithm
	B.2. Recording of Side Effects
	B.3. Function Mode and Asm Mode
	B.4. Invalid Value Calculations

