<

VZZVIDIA.

Optimizing For Hardware

Transform and Lighting
Sim Dietrich

NVIDIA Corporation
sdietrich@nvidia.com

HW T&L : The Good News

« Hardware T&L is extremely fast

- GeForce2 GTS can achieve 22 million drawn
triangles per second — Quadro2, Ultra even more

e Using Hardware T&L correctly is very easy

- In DX7, it all happens through VertexBuffers

<

7ZVIDIA.

HW T&L : The Bad News

e Using HW T&L incorrectly is even *easier* than
getting it right

- Some apps are slower when first ported to T&L!

« Why? Because the obvious way to use VBs is
NOT the right way

- If you replace many DrawPrimitive calls with many
DrawPrimitiveVB calls, you will be very

disappointed @

7ZVIDIA.

HW T&L : A New API Path

e The “D3D TnL HAL” Device is new for DX7
e |t allows access to :

AGP and video memory vertex buffers
« HW Texture Matrix
- HW Texture Coordinate Generation “TexGen”
- HW Fog
- HW Lighting
- HW Clipping
- HW Transform & Projection

<

7ZVIDIA.

The D3D TnL HAL

e The TnL HAL is a different API and driver path
than the HAL

e |t has different Performance Characteristics
- Even more oriented towards batching than the HAL

- Higher memory overhead for VBs

* They are DDraw Surfaces, so have a 2K memory
overhead

- Very expensive to create VBs
- Has the potential to be lighter-weight and faster

than the HAL @

7ZVIDIA.

What Is a Vertex Buffer, Anyway?

e There are two answers to this question, one for

Static VBs, and one for Dynamic VBs

Static VBs are like textures. You create them at
level load time in AGP or video memory and leave
them there

- Great for terrain, rigid-body objects

- Not good for skinned, animated characters or
procedural effects

- NEVER create a VB at runtime — it can take 100s of

milliseconds @

7ZVIDIA.

Vertex Buffers are Write Only

They are not designed for getting results back
with ProcessVertices()

You can never get the result of T&L back

But that’'s OK

- If you need to do collision detection or culling,
you'd do best to use a separate simpler database
anyway

e Case in point — Do you really need to walk through
U,Vs & diffuse colors when doing collision work?
VBs should always be WRITE _ONLY — even on
non T&L devices

<

7ZVIDIA.

Dynamic VBs

« Dynamic VBs are sort of like like streaming DVD
video

- Thereis not enough space to hold every possible
frame of animation, just like there wouldn’t be
enough space to hold a DVD video in ram

- Plus, many effects are truly dynamic and have an
essentially infinite number of possible states

- The focus is on getting the vertex data from the
app to the card as efficiently as possible

<

7ZVIDIA.

The Myths Of Dynamic VBs

e If your dataisn’t static, you can’t use T&L

- Wrong, VBs were designed to handle Dynamic
data, too

e Dynamic T&L is so slow as to be worthless

- Totally incorrect, Dynamic T&L is still faster than
static CPU T&L

e Itis hard to manage Dynamic VBs
- | have a single page of source code to prove this

one wrong...
<

7ZVIDIA.

Shared Resources

The GPU is a co-processor to the CPU

If you can keep both processors busy, speed will
be excellent

However, to work together, the CPU and GPU
must sometimes share resources

o Textures
- Frame Buffers
- Vertex Buffers

If the sharing is managed poorly, you will get no
overlap between the GPU and CPU and
performance will suffer @

7ZVIDIA.

Keeping GPU & CPU Busy

Dynamic VBs are a shared resource
CPU must write data into it
GPU must read data out of it

The API tries to ensure that both of these won't
occur in the same place at the same time

You can control how strictly access to the VB is
managed

Control is managed through three flags :

- DDLOCK_ WRITEONLY

- DDLOCK DISCARDCONTENTS

- DDLOCK_NOOVERWRITE <@.—
ZVIDIA.

DDLOCK_WRITEONLY

Use D3DVBCAPS_WRITEONLY when creating
your VB

Use ONLY this flag

Do NOT USE DDVBCAPS SYSTEMMEMORY, or
you will not get AGP or video memory vertex
buffers

- This will require the driver to copy the data into
AGP first

- You could have just put it there yourself and saved
the work

If you specify this cap, you can only lock w/ @

DDLOCK_WRITEONLY
ZVIDIA.

DDLOCK_ DISCARDCONTENTS

e This flag tells D3D

- “lJust need more space, give me a pointer with
junk in it, please”

- Specifying this flag allows the driver to “rename”
vertex buffers

- You are saying that you don’t want the object back
that you just drew, you are saying that you are
going to fill up part of this with new data

- This prevents stalling the CPU & GPU @
VIDIA.

DDLOCK_ NOOVERWRITE

« DDLOCK NOOVERWRITE says “l am just
appending data to the VB, no need to stall”

 This allows you to append data to a VB without
Incurring a stall of the GPU & CPU

<

7ZVIDIA.

Using These Flags Together

Start of Frame — Lock your Dynamic VB with
DDLOCK_DISCARDCONTENTS

- Giving you an empty buffer
Fill with data to render
Call Unlock(), then DrawindexedPrimitiveVB ()

Now, as long as there is room in the VB,
« Lock with DDLOCK_NOOVERWRITE

- Append Data into VB pointer

- Unlock(), and DIPVB()

If you run out of room, just lock the SAME VB
with the DDLOCK_DISCARDCONTENTS and
repeat VIDIA.

Other Dynamic VB tips

Only use ONE dynamic VB

- Anissue with DX7 requires this for performance
- This implies using the largest FVF you need
Send triangles in large batches if you can

NEVER use DrawPrimitive, or
DrawlndexedPrimitive, even for Text
« It will ALWAYS cause a stall of the GPU & CPU

Check out your system’s AGP perf with BenMark
from our website

- GeForce should get 14 million tps @ AGP2X

. GeForce2 ~22 million w/ AGP 4x <.
ZVIDIA.

Other VB Perf Tips

Changing VB is more expensive than changing
textures — this is an API thing, not the HW

Never do your own VB “round robin” —that’s
what the DDLOCK_DISCARDCONTENTS flag is
for

Never use ONLY DDLOCK_DISCARDCONTENTS,
there are only so many “rename” buffers —use
appending, too

Use only one or two static VBs, and use index
lists for different objects within them

Write into DynamicVBs sequentially for AGP @

write-combining performance
ZVIDIA.

Source Code

| wrote an extremely lightweight wrapper for
correct Dynamic VB functionality

On NVIDIA’s Developer Website

One for C++ heads (like me)
- DynamicVB.hpp

One for C types
- DynamicVB.h

<

7ZVIDIA.

Other Optimizations : Culling

e The CPU is still needed for gross culling
- View Frustum

* Sphere, AABB, OBB, Cone, Cylinder
« Occlusion

* Don’t use span buffers or C-buffer —too much CPU

work
- Light Culling
* Turn off lights that are too far away to affect the
object

* Turn point lights into directional if far away
- Fog Culling

* Turn off fog if objects are too far from the fog planecgl
ZVIDIA.

Culling and Clipping

Do gross culling on the CPU, but leave the
Clipping to the GPU

Expect H/W clipping to be fast (GeForce clipping
IS essentially free)

Expect guard band clipping to be very fast

Don’t cull individual polys unless you cull them
very early and they are quite expensive

« Culling should be at the model or hierarchy level

- For world geometry at the BSP Leaf or OctTree
cube level

H/W will clip out 1.0<z<0.0 @
ZVIDIA.

Other Optimizations : LOD

« Use the CPU to perform gross LOD

- For terrain, don’t use ROAM —too CPU heavy —
cheaper to just draw the darn triangles than to
figure out which ones to draw and which to skip

- If you do adaptive terrain, do one where you
* A)don’t track previous frame’s terrain
* B) Don’t do screen space error for every triangle

* C) Can ‘quit’ at a high enough level to keep large
batch sizes — Quadtree approaches

e Don’t do View-dependent progressive meshes
- Again, too much CPU work

 View Independent Progressive Meshes look greagg
and are trivial to use with vertex buffers
7ZVIDIA.

Other Optimizations : LOD

 Never try to scale to frame rate by adding or
removing triangles in small groups on a T&L card

- You are just wasting CPU time

- 90% of frame rate drops are CPU or fill-bound, not
triangle bound

« Do less LOD calculations when frame rate drops,
not more, save the CPU time

- Reduce depth of volumetric effects, especially
when player is near

- Reduce particle counts, especially when player is
Inside the particle system

e Player won'’t notice (@_
HVIDIA.

Other Optimizations : Lighting

If multi-pass, you often don’t need it on for both
passes

Turn on & off lights per object based on distance
from light

Turn off per-vertex material properties if you
don’t need them

- Using the per-vertex diffuse for the diffuse material
IS expensive — use it wisely

Turn off local viewer for specular lighting if not
needed
- If you are not sure, you probably wouldn’t notice

Turn off SpecularEnable if you aren’t using @

specular for this pass
VIDIA.

Other Optimizations : Vertex Cache

GeForce GPUS have a ~10 entry FIFO vertex
cache

. Post-transformed vertices

If you reuse an indexed triangle within 10
vertices, you save the AGP B/W & transform cost

If you don’t index, or don’t re-use, you pay both
AGP & transform again

The fastest primitive is indexed strips, sometimes
only the cost of one short per triangle if all reside
In cache

Use the NVStripifer on our website to optimize @ :

your models IVIDIA.

Other Optimizations : Triangle Size

o Little known facts
Every app is fillbound
Every app is Xform or setup bound
- In different parts of the same scene
- Two Engines in parallel — vertex and pixel

e Given fill rate, b/w and max xform/setup rate you can
determine what the optimal triangle size is for a GPU

For GeForce, with a few lights on it’s about 100 pixel
triangles

Bigger Tris get you temporarily fill bound
Smaller Tris get you vertex bound

More expensive vertices (more lights or xform work) @
need bigger triangles to balance out

7ZVIDIA.

Other Optimizations : Triangle Size

e If you are temporarily fill bound (Tri too big), you
lose xform rate

e If you are xform bound (xformed vertex cache is
full) you loose potential fill rate

 This is one reason why you may not see the
optimal vertex or fill rate

- If one engine is backed up, the other will eventually
Idle —and you never get this time back

- When you are drawing the sky, you lose potential
triangles

- This means that you can tessellate down to the @

optimal triangle size in these cases for FREE
ZVIDIA.

Other Optimizations : Stat Driver

NVIDIA has provided a Statistics Driver for
registered developers

- Written by Ken Hurley

You install two parts

- A monitoring program

- A special stats driver

You start the monitoring and then run your app

- Or, you can use a hotkey to toggle the stats
collection

Quit your app and see where you are forcing a

SpinLock() <.

- This means the CPU & GPU are idle NVIDIA.

Stats Driver

SpinLock() means the CPU is waiting on the GPU
to finish with something

- Usually a shared resource
Most apps spend quite a bit of time here
- This time is totally wasted!

The Stat Driver monitor will tell you where your
d3d & driver CPU time is going

Your app should be spending > 60% of the Driver
time in DrawindexedPrimitiveVB

SpinLock() should be < 5%

The log file can help you track down the culprit (@_
ZVIDIA.

Summary

T&L Is Faster, but it is different

- The first time you port to DX7, you will almost
certainly do it wrong! ;(

Use Static VBs for static geometry
Stream vertex data through DynamicVBs

Use the stat driver often when working on
rendering code

- Take out stalls as soon as they are introduced
* Texture Locks

FB or ZB Locks

VB Locks w/out proper flags

 DrawPrimitive or DIP, not the VB calls

<

7ZVIDIA.

Questions...

?

Sim Dietrich

Sim.dietrich@nvidia.com

<

7ZVIDIA.

