
SPINDLE

Operator's Handbook

Spindle Operator’s Handbook

2 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

Contents

Introduction . 5
Features . 5
License . 6
Building from source . 6
Acknowledgements . 6

I Loader and decruncher 7
1.1 Basic operation . 9
1.2 The load script . 10
1.3 Bank selection . 11
1.4 A humble trackmo . 12
1.5 Running Spin . 15
1.6 Labels and seeking . 16
1.7 Multi-side trackmos . 17
1.8 Directory art . 18
1.9 Advanced features . 18

II Effect linking framework 21
2.1 Overview . 23
2.2 Lifecycle . 25
2.3 The effect header . 26
2.4 Driver . 28
2.5 Early setup code . 29
2.6 Overlapping lifecycles . 30
2.7 Making a chain . 32
2.8 Music . 33

2.8.1 Installing a player . 33
2.8.2 Synchronisation . 34

2.9 Visualisation . 36
2.10 Labels, jumps, and loops . 39

Operator’s Handbook rev. 1, Spindle 3.0 3

Spindle Operator’s Handbook

2.11 Flip-disk parts . 41
2.12 Streaming data . 42

2.12.1 Streaming graphics . 42
2.12.2 Streaming music . 44

2.13 Effect debugging . 45
2.14 Using the reserved areas . 46
2.15 Methodology . 46

4 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

Introduction

Congratulations on your discovery of Spindle, the integrated linking, loading, and
decrunching solution for trackmos and other data-intensive applications for the
Commodore 64 and Commodore 1541 platform.

The core of Spindle is a cutting-edge IRQ loader featuring extremely fast scattered
loading and decrunching, a small RAM footprint, and state of the art serial transfer
routines.

On top of this, Spindle provides an optional linking framework that automates
much of the tedious work traditionally associated with trackmo development. By
hiding the details of the storage model, Spindle allows the demo coder to focus on
effects, transitions, and flow.

Features

• All-in-one scripted linker, cruncher, and D64 disk image writer.

• Fully documented.

• World class loading speed.

• Tiny memory footprint: One resident page, one buffer page, and five zero-
page bytes. Buffer and zero-page areas are free to use between loader calls.

• Choice between a high-level demo linking framework and a low-level API with
direct control over the loading process.

• Transparent and fast loading to RAM underneath the I/O registers.

• Works with other drives present on the IEC bus. Other drives can be 1541,
157x, and 1581. To ensure reliable operation, the serial transfer speed is
slightly reduced when other drives are present.

• Support for multiple disk sides, with knock-codes to prevent compo acci-
dents. Trackmos can be resumed from any side.

• Seekable load scripts, for all your looping and branching needs.

• Streaming: Refill graphics and music buffers within and across effects.

• Debugging tools: Effects can run standalone with simulated playroutine tim-
ing and memory boundary checks.

• Reads directory art in many formats: PETSCII, D64, Screen RAM, Charcoal.

• Fully open source, with prebuilt binaries for Linux and Windows.

Operator’s Handbook rev. 1, Spindle 3.0 5

Spindle Operator’s Handbook

• Extensively tested, including on THCM’s highly picky drive.

• Innovative hybrid scattered/linear decrunching algorithm.

• Advanced drivecode features: Headerless scanning, triple sector buffers, and
GCR decoding on the fly.

• Invented Here SteppingTM keeps the data flowing during track changes.

• Reset detection.

• 40-track mode.

License

Go ahead and use this in your demos! You can include the spindle logo (examples/
pefchain/spindlelogo) if you like, but you don’t have to. I would appreciate some
credit, e.g. “Loader by lft”.

Please refer to the file COPYING for the formal stuff.

Building from source

Spindle is distributed with precompiled binaries for Linux (i386 and x86_64) and
Windows.

To build the toolchain from source you need the xa65 cross-assembler, a C com-
piler, and make. Under Linux, enter the src directory and run make. To cross-compile
the Windows binaries on a Linux system, you need mingw32, and then you can run
make win.

Acknowledgements

I would like to thank the following individuals for inspiration, suggestions, bug
reports, and testing: Bitbreaker, Krill, Ninja, Raistlin, Sparta, and THCM.

Greetings to Spindle users all over the world, including Arise, Atlantis, Atwoods
Studios, Bonzai, Chorus, Defame, Delysid, Desire, The Dreams, Extend, Genesis
Project, Samar Productions, and Triad.

6 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

Part I

Loader and decruncher

Operator’s Handbook rev. 1, Spindle 3.0 7

Spindle Operator’s Handbook

Spindle consists of two layers: a high-level linking framework implemented on top
of a low-level IRQ loader and decruncher.

The Spin tool offers direct access to the lower layer, giving the programmer full
control over the loading and decrunching process, and the ability to specify exactly
what to load and when. Spin could be seen as a slimmed-down alternative to the
full linking framework described in Part II.

1.1 Basic operation

The White Rabbit put on his spectacles. “Where shall I begin, please
your Majesty?” he asked.

“Begin at the beginning”, the King said, very gravely, “and go on till
you come to the end: then stop.”

—Lewis Carroll, Alice’s Adventures in Wonderland

At the heart of every Spin-based trackmo is the load script. Spin parses the script
at compile-time, reads and crunches all files that it refers to, and bakes everything
into a disk image in D64 format. On the disk image is a small program file—a
bootstrap—that installs the loader and drivecode, loads the first set of files from
the script, and jumps to an address of your choice.

Once the trackmo is up and running, it normally invokes the loader in a predeter-
mined sequence. For each loader call, Spindle loads the data that was specified in
the script at that point.

The loader occupies one page of C64 memory at all times, called the resident
page. By default this is page 2 (i.e. 200-2ff, just after the stack). Because of the
predefined load script, there is no need to pass any parameters to the loader
at runtime. All you need to do is jsr to the beginning of the resident page (i.e.
jsr $200 when using the default location).

During loader calls, Spindle overwrites a separate buffer page (300-3ff by default)
and five consecutive zero-page locations (f4-f8 by default). Like the resident page,
these areas can be moved by passing commandline options to Spin. Between
loader calls, you can use the buffer page and zero-page area as you please; only
the resident page needs to be preserved.

Operator’s Handbook rev. 1, Spindle 3.0 9

Spindle Operator’s Handbook

Starting with version 3.0 of Spindle, it is also possible to break the predefined
sequence by seeking to arbitrary points in the load script. This can be used to
create looping or branching demos and is described in detail in a later section.

1.2 The load script

Let us have a look at a typical load script. It is taken from the complete Spin
example included in the Spindle distribution (examples/spin).

demo.prg
Specular_Highlight.sid 1000 7e

pic1.kla 6000 2 1f40
pic1.kla 4000 1f42

pic2.kla 6000 2 1f40
pic2.kla 4000 1f42

pic3.kla 6000 2 1f40
pic3.kla 4000 1f42

Blank lines are used to divide the script into paragraphs, where each paragraph
corresponds to a single loader call, also known as a job.

A job is made from one or more data chunks, listed in a four-column format. The
first column specifies a filename, which may optionally be enclosed in quotes
("). This is the only mandatory column. The second column specifies a loading
address. If the loading address is zero or omitted, the first two bytes of the file are
used. Loading to shadow RAM (in the d000-dfff range) works transparently.

Earlier versions of Spin also allowed you to load directly into I/O registers by
adding an exclamation mark after the load address. This rarely used feature
has been removed for performance reasons.

The third column specifies a byte offset within the file. Spin will seek to this offset
before reading from the file (also before reading the load address, where applica-
ble). The fourth column specifies the number of bytes to read.

All numbers are assumed to be in hexadecimal notation by default. Decimal num-
bers are accepted with a + prefix.

10 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

In the example script there are four paragraphs, corresponding to four loader calls.
The first call is implicit, because it will be made automatically by the bootstrap
program. This loads some code from demo.prg, to the address specified in the file.
Additionally, it loads a SID tune to address 1000, starting at byte offset 7e in the
file (right past the PSID header). The remaining paragraphs will be used to load
three different pictures in Koala format.

After making the first loader call, the bootstrap needs to know where to jump. You
can specify this with the -e commandline option to Spin, or you can let it fall back
on default behaviour, which is to take the load address from the first file in the
first paragraph. In the example, demo.prg loads to address 800, so the bootstrap
program will jump to the code at that address.

However, before we look into demo.prg, we need to consider some practicalities.

1.3 Bank selection

When you are working with Spindle, VIC bank selection must be done using dd02.
Your code is not allowed to touch dd00. Use the following constants to select VIC
bank:

dd02 VIC bank

3c 0000-3fff
3d 4000-7fff
3e 8000-bfff
3f c000-ffff

During initialisation, Spindle disables CIA interrupts, sets the interrupt-disable flag
(sei) and writes 35 into the bank selection register at address 1. You should leave
it at 35 when making loader calls. You may change it as you please from within
your interrupt handlers, as long as you restore it afterwards.

The loader will only ever write 35 or 34 to address 1, and it will only write 34 when
it has been explicitly asked to load into shadow RAM (in the range d000–dfff). Thus,
you only need to save and restore this register from your interrupt routines if they
will execute during a loader call that involves shadow RAM.

To save a few cycles, you can use the following trick instead of preserving the
value at address 1:

interrupt:
dec 0 ; go from 2f to 2e

Operator’s Handbook rev. 1, Spindle 3.0 11

Spindle Operator’s Handbook

; ...interrupt code goes here...

lsr $d019 ; acknowledge the raster irq
inc 0 ; back to 2f
rti

By clearing the LSB of the data direction register, you are forcing the correspond-
ing bank selection bit high. Because Spindle only ever writes 34 or 35 to address 1,
what comes out of the port during the interrupt routine will always be 35.

1.4 A humble trackmo

We will now take a look at the source code for demo.prg (listed below). This is a
very small slideshow demo. First, it initialises the SID tune that was also loaded as
part of the first, implicit, loader call. Then it sets up a raster interrupt to call the
playroutine.

After setting up the music player and selecting the proper graphics mode and VIC
bank, the first explicit loader call is made. In accordance with the script above, this
will load the first Koala picture. The bitmap is loaded (and decrunched) at 6000,
and the video matrix, colour RAM and background colour are loaded at 4000. Next,
the demo proceeds to copy the loaded colour data into colour RAM and store the
desired background colour in d021.

The demo waits for space, loads the next picture, waits for space again, and loads
the third and final picture. After this, the script is done, and calling 200 again would
result in undefined behaviour.

Between loader calls—including after the final load operation—Spindle can detect
when the C64 reboots. When that happens, the drivecode will automatically unin-
stall itself and reset the 1541. You can also trigger this behaviour manually by
writing 0 to dd00.

; This is an example demo bundled with Spindle
; linusakesson.net/software/spindle/

.word entry
* = $800

entry
; Call music init.

lda #0

12 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

jsr $1000

; Set up raster interrupt.

lda #$3b
sta $d011
lda #$ff
sta $d012
lda #$01
sta $d01a
lsr $d019

; Install IRQ handler to call playroutine.

lda #<irq
sta $fffe
lda #>irq
sta $ffff
cli

; Switch banks so we can watch the loading process.

lda #$3d
sta $dd02
lda #$08
sta $d018
lda #$18
sta $d016
lda #$0
sta $d020

; Load the first picture.

jsr nextpicture

; Wait for space, then load the next picture, etc.

jsr wait4space
jsr nextpicture
jsr wait4space
jsr nextpicture

; All done.
; The drive will be reset when ATN is released (e.g. at system reset).

jmp *

nextpicture

Operator’s Handbook rev. 1, Spindle 3.0 13

Spindle Operator’s Handbook

jsr $200 ; Call the loader.

; Since Spindle 3.0, we cannot load directly into colour RAM, because
; that wouldn’t work with in-place decrunching. So we load the colours
; just after the vm data, and copy them into place.

ldx #0
copy

lda $4000+1000,x
sta $d800,x
lda $4100+1000,x
sta $d900,x
lda $4200+1000,x
sta $da00,x
lda $4300+1000,x
sta $db00,x
inx
bne copy

lda $4000+2000
sta $d021
rts

wait4space
lda #$ff
sta $dc02
lsr
sta $dc00
lda #$10
bit $dc01
beq *-3
bit $dc01
bne *-3
rts

; A simple IRQ to call the playroutine and acknowledge the interrupt.
irq

pha
txa
pha
tya
pha
jsr $1003
pla
tay
pla
tax
pla

14 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

lsr $d019
rti

1.5 Running Spin

Armed with the above script, demo.prg and the three Koala pictures, we are ready
to run the Spin commandline tool. This can of course be done manually or auto-
mated with a build system (which could be as simple as a batch file).

Since the example script makes use of relative filenames, we have to navigate to
the directory that contains the files. Then it is a simple matter of:

spin script

This creates a disk image with the default output filename, disk.d64. While Spin
uses its own D64-compatible storage format, it respects and coexists with the
native Commodore disk structure, so demo disks can be adorned with noters and
other auxiliary files using standard tools like c1541.

You can use the -o commandline option to change the output filename, and -r, -b,
and -z to configure the resident page, buffer page, and zero-page area, respec-
tively. Thus:

spin -o demo.d64 -r c -b d -z 2 script

would tell Spin to create a file called demo.d64, to place the resident loader at c00
and the buffer page at d00, and to use zero-page locations 02-06.

Normally, Spin will run rather quietly, only reporting the number of free blocks
remaining on the disk. But you may find it illuminating to enable verbose output
by specifying the -v option one or more times. For the example above, -v provides
the following summary:

0800-0895 "demo.prg": 150 bytes crunched to 141, ratio 94.00%.
1000-35d6 "Specular_Highlight.sid": 9687 bytes crunched to 5405, ratio 55.80%.
6000-7f3f "pic1.kla": 8000 bytes crunched to 5480, ratio 68.50%.
4000-47d0 "pic1.kla": 2001 bytes crunched to 936, ratio 46.78%.
6000-7f3f "pic2.kla": 8000 bytes crunched to 5999, ratio 74.99%.
4000-47d0 "pic2.kla": 2001 bytes crunched to 1082, ratio 54.07%.
6000-7f3f "pic3.kla": 8000 bytes crunched to 6236, ratio 77.95%.
4000-47d0 "pic3.kla": 2001 bytes crunched to 972, ratio 48.58%.
At startup (with entry at $0800):

Operator’s Handbook rev. 1, Spindle 3.0 15

Spindle Operator’s Handbook

* $0800-$0895 (a9 00 20 00 10 a9 3b 8d ...) from "demo.prg"
* $1000-$35d6 (4c 10 14 a2 00 bd 00 19 ...) from "Specular_Highlight.sid"

Loader call #1:
* $6000-$7f3f (55 55 55 55 55 55 55 55 ...) from "pic1.kla"
* $4000-$47d0 (00 00 00 00 00 00 00 0b ...) from "pic1.kla"

Loader call #2:
* $6000-$7f3f (fc 33 cc 33 cc 33 cf c3 ...) from "pic2.kla"
* $4000-$47d0 (00 00 09 00 00 00 09 09 ...) from "pic2.kla"

Loader call #3:
* $6000-$7f3f (ea aa ea aa aa aa aa aa ...) from "pic3.kla"
* $4000-$47d0 (07 0a 0a 0a 0a a2 00 0a ...) from "pic3.kla"

demo.d64: 557 blocks free (538 for DOS).

The last line of output tells you how many sectors are left on the disk. Spindle
needs to occupy whole tracks for performance reasons, so the last track usually
contains some empty space that can’t be used by DOS. The first number (“blocks
free”) tells you how much the demo can grow and still fit on the disk, while the
second number (“for DOS”) tells you how much space is available for additional
non-Spindle files.

1.6 Labels and seeking

Starting with version 3.0, Spin allows you to declare labels in the load script, and
jump to these labels at runtime. A label is a hexadecimal number in the range 00-
3f followed by a colon:

demo.prg
Specular_Highlight.sid 1000 7e

1:
pic1.kla 6000 2 1f40
pic1.kla 4000 1f42

2:
pic2.kla 6000 2 1f40
pic2.kla 4000 1f42

1f:
pic3.kla 6000 2 1f40
pic3.kla 4000 1f42

Labels can appear in any order in the script, and multiple labels may refer to the
same job, but each label must be unique; they can be thought of as 6-bit filenames.

16 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

Seeking to a label is done by loading the desired label number into A and calling
the routine spin_seek provided in template/seek.s. Doing so will only reposition
the stream; a separate loader call is then required to actually load the correspond-
ing group of files.

1.7 Multi-side trackmos

Spindle supports multi-side trackmos. Each disk side is compiled separately. This
helps with keeping down build times (since the entire disk side is crunched when
building), and allows you to specify title and directory art for each side indepen-
dently. But there is still a need to somehow associate the disk sides with each
other at compile time, so the flip-disk routines can wait for the correct disk to be
inserted, rather than blindly load whatever data that turns up. To this end, Spindle
uses a system of magic numbers: For each disk side except the first, you have to
specify a unique 24-bit number known as a knock code (as in: Knock knock, what’s
the password?). For each disk side except the last, you have to specify the correct
knock code for the next disk side. You can generate knock codes using any random
number generator. Please do that, rather than using mnemonic values that others
might also pick.

For each disk side, you specify its own knock code using --my-magic, and the
knock code of the next side using --next-magic. Here is an example, for a three-
side demo:

spin -o side1.d64 --next-magic c7189d script1
spin -o side2.d64 --my-magic c7189d --next-magic 0f91e9 script2
spin -o side3.d64 --my-magic 0f91e9 script3

When you specify the --next-magic option, spin adds two invisible loader calls to
the end of the script. The first of these extra loader calls will block until the next
disk side has been inserted, and then return. This allows you to stop displaying
“flip disk” on the screen as soon as the correct disk has been detected. The second
extra loader call corresponds to the first, implicit, loader call of the next disk. So
when this call returns, you’ll be in a position to jump to the newly loaded code,
and continue the demo on the new side.

Note that each disk side will have its own entrypoint, by default the load address
of the first file mentioned in the script. In this way, it is possible to restart the
trackmo from any disk side. It also allows you to work on each disk side separately
when developing and syncing the demo. But when you are transitioning from one

Operator’s Handbook rev. 1, Spindle 3.0 17

Spindle Operator’s Handbook

side to the next, the code on the current side explicitly has to jump into the code
on the next side. This gives you the freedom to jump to a different address, and
thus to treat the transition from side 1 to side 2 differently from the case where
the user boots directly into side 2.

All disk sides must be compiled with the same version of Spindle and use the same
resident page, buffer page, and zero-page area.

1.8 Directory art

Spin lets you load up to 48 lines of directory art from a file with -a. Directory
art is always 16 characters wide, and you can’t use colours or inverted PETSCII
characters.

The file format is detected automatically, and several formats are supported:

• Plain PETSCII: A text file where uppercase ASCII letters correspond to upper-
case PETSCII letters, while lowercase ASCII letters correspond to graphical
PETSCII symbols.

• D64: Spindle copies the directory art from an existing D64 disk image.

• Screen RAM: A raw dump of screen memory, with up to 25 lines of art,
prefixed by its load address (usually 400). The art should be positioned in the
upper left corner of the screen. The screen codes are converted to PETSCII.
Remember that inverted characters aren’t supported.

• Charcoal: The file format used by the Charcoal PETSCII editor, with up to
25 lines of art. The art should be positioned in the upper left corner of the
screen. Remember that inverted characters aren’t supported.

Use the -t option to choose a different title (label) for the disk, and -i to specify a
two-byte disk ID. The disk ID isn’t used by Spindle, but it shows up in the directory
listing.

1.9 Advanced features

Spin can create 40-track disk images with the --40 commandline option.

Read errors can be simulated using the -E option. For instance, spin -E 30 script
creates a disk image where the drivecode fails to read a sector 30% of the time.

18 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

This lets you identify loading bottlenecks and stress-test the timing of your track-
mos.

If a loading job is about to begin just a few blocks ahead of a track change,
Spindle inserts padding sectors to align the job boundary with the track change, to
improve loading speed. The padding sectors aren’t wasted: They contain copies of
other sectors from the same track, which reduces the average time spent scanning
for sectors, further boosting the loading speed. But sometimes you really need
every last block of disk space you can get, in which case you can disable the
padding mechanism with the --squeeze option.

Spindle takes over the IEC bus completely. If other drives are present on the bus,
they are silenced so they won’t interfere with the custom serial protocol used by
the loader. This feature was inspired by earlier work by Monte Carlos and Krill.
Spindle can silence 1541, 1541-II, 1570, 1571, and 1581 drives, and restore them
as soon as a C64 reboot is detected.

Note that in the Vice emulator, drive silencing currently only works when the demo
is loaded from the highest-numbered drive. This problem is not present on real
hardware.

Normally, Spindle uses a very fast serial protocol (18 cycles per bit pair) when
transferring data from the drive, which is close to the electrical limitations of the
IEC bus. When Spindle detects that other drives are present on the bus, it will
automatically switch to a slower serial protocol (19 cycles per bit pair) to ensure
reliable data transfers.

C128DCR owners may want to connect an external floppy drive just to enforce the
slow protocol, to cope with the high IEC bus capacitance on that machine.

Operator’s Handbook rev. 1, Spindle 3.0 19

Spindle Operator’s Handbook

20 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

Part II

Effect linking framework

Operator’s Handbook rev. 1, Spindle 3.0 21

Spindle Operator’s Handbook

So far, we have seen that Spindle contains a highly efficient loader and decruncher
that can be used on its own via the low-level Spin interface. To expose the full
power of Spindle, we now turn to the high-level effect linking framework.

This part of the manual assumes some familiarity with the material covered in
Part I.

2.1 Overview

The basic building block of a Spindle trackmo is the individual demo part, or effect.
A compiled effect is stored in a single file with the extension .pef (packaged
effect). The mkpef tool is used to bundle a blob of code, some metadata (called the
effect header), and any number of data chunks with different target addresses,
into such a file.

code.s
(with effect header)

code.efo

 assembler

part.pef

data1.prg data2.bin

 mkpef

The mkpef tool is straightforward to use. Simply list the data files on the command-
line, and optionally specify an output filename with -o. It is possible to supply load
address, offset, and length using a comma-based syntax (run the tool without
options to see brief usage instructions). For instance:

mkpef -o part.pef code.efo data1.prg data2.bin,4000

Operator’s Handbook rev. 1, Spindle 3.0 23

Spindle Operator’s Handbook

The first chunk of data in a packed effect is special, and usually contains all the
code for the part. It’s called an effect object (filename extension .efo), but it’s
just a regular binary file produced by your favourite assembler. It starts with a
special effect header that contains, among other things, six pointers to routines
that represent various stages of the effect lifecycle (described in detail below):
prepare, setup, interrupt, main, fadeout, and cleanup.

During development and debugging, the packed effect can run as a standalone
C64 program. The tool pef2prg converts a .pef file into a C64 executable file that
runs the effect, optionally with a dummy music player that occupies a given num-
ber of rasterlines. The same tool can also produce a Vice monitor script to verify
that the effect stays within the memory bounds declared in the effect header.

effect1.pef

effect1.prg

 pef2prg

effect2.pef

effect2.prg

 pef2prg

Another tool, Pefchain, links together several effects according to a script, and
produces a complete trackmo in the form of a D64 image.

effect1.pef

trackmo.d64

effect2.pef script

 pefchain

24 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

In contrast to Spin, which was reading a script of jobs (i.e. loader calls), Pefchain
works with a script of effects:

part1.pef space
part2.pef space

In the effect script, you get to specify a transition condition for each part, typically
space during early development (waiting for the user to press space). Later on,
these conditions are changed into e.g. waiting for a memory address to contain
a given value, for synchronising with music. The trigger condition is always space
for standalone executables created by pef2prg.

An effect does not necessarily correspond to a loader job. Pefchain splits the
chunks of each effect along page boundaries, recombines them, and arranges
for the resulting snippets to be loaded at various loading slots throughout the
trackmo.

This system provides creative freedom by allowing you to reorder effects very
easily. Spindle automatically decides what to load and when, and computes an
optimal loading schedule, while you are free to focus on aesthetics and flow.

2.2 Lifecycle

This is the lifecycle of a Spindle effect, regarded in isolation:

----- Preparations ---
1. Load any remaining sectors
2. Call prepare
----- Switchover ---
3. Disable interrupts
4. Store the address of the interrupt routine at fffe-ffff
5. Call setup
6. Enable interrupts
----- Running --
7. Repeatedly call main until some condition (e.g. space)
8. Repeatedly call main and fadeout until fadeout sets carry
----- Aftermath --
9. Call cleanup

All of the routines are optional: Supply a null pointer to make Spindle ignore a par-
ticular vector. Most new effects start out with just prepare, setup and interrupt.

The prepare routine is responsible for the bulk of the initialisation. This is where

Operator’s Handbook rev. 1, Spindle 3.0 25

Spindle Operator’s Handbook

you generate speedcode and tables, make copies of graphics data across multiple
banks and so on. You should not write to any VIC registers in prepare.

The job of the setup routine is to initialise the VIC registers (including colour RAM)
just before the effect starts. This routine executes with interrupts disabled, and
should be fast. Don’t forget to initialise d011, d012, d015, d016, d018 and dd02.
Your part may follow some other part that leaves unexpected values in these
registers.

The interrupt routine obviously executes in interrupt context; this pointer is writ-
ten directly to the vector at fffe. Of course you can modify fffe as part of your
effect; Spindle only writes this vector at step 4 in order to minimise the amount of
boilerplate code needed to get a new demo part up and running.

The main routine is intended for effects that fill a framebuffer as fast as possible
but don’t achieve full frame rate (sometimes known as “newskool effects”). Try to
avoid using a main routine if you can, since Spindle cannot load while it is active.

The fadeout routine typically does two things: It triggers a fadeout operation,
usually by setting a global flag that affects the behaviour of the running effect.
It also monitors the fadeout in progress, returning with carry set if the fadeout
has completed. Mnemonic: “Carry on” with the next effect. If the demo part is
main-less, fadeout is simply called repeatedly in a tight loop. Otherwise, Spindle
alternately calls main and fadeout.

In addition, fadeout plays a special role during non-linear operation (jumping around
in the effect script), which will be described in a later section.

Finally, the cleanup routine can be used to tear down the demo part in a con-
trolled fashion. It is called while interrupts are still enabled, but you can put a
sei instruction inside cleanup if this is desirable. You could, for instance, install a
non-maskable timer interrupt in setup and disable it in cleanup. Or you could use
cleanup to wait for a particular rasterline before moving on to the next demo part.

2.3 The effect header

The .efo file, i.e. the file containing the assembled code for the effect, must start
with a special header. All you have to do is place some constant declarations at
the top of the source code, with information for the linking system and pointers to
a few routines. Use template/effect.s as a starting point.

The code must start with the following fixed-size header (with no loading address
before it):

26 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

.byt "EFO2" ; fileformat magic

.word prepare ; prepare routine

.word setup ; setup routine

.word interrupt ; irq handler

.word main ; main routine

.word fadeout ; fadeout routine

.word cleanup ; cleanup routine

.word callmusic ; location of playroutine call

The fixed-size header is followed by a variable-size list of options. An option con-
sists of a single tag byte followed by 0–2 parameter bytes (depending on the tag).

The valid tags are:

.byt "P",FIRST,LAST

Declares that this demo part uses the range of memory pages from
FIRST up to and including LAST. There is no need to declare memory
pages that are loaded, i.e. are in the loading range of one of the chunks
that make up a packaged effect. But if you generate code or tables
at runtime, you have to declare that memory. You can use this option
multiple times.

.byt "I",FIRST,LAST

Declares that this demo part inherits the contents of the range of mem-
ory pages from FIRST up to and including LAST from the previous part.
Normally, you don’t need to use this option. But it comes in handy when
you start coding transitions between parts, such as when you load a
bitmap as part of a preliminary fade-in part, and then wish to re-use
that same bitmap in the actual part. Also, a BASIC fader will typically
inherit the screen buffer with .byt "I",$04,$07. You can use this option
multiple times.

.byt "Z",FIRST,LAST

Declares that this demo part uses zero-page locations from FIRST up to
and including LAST. It is often convenient to keep all zero-page locations
used by an effect close together, and declare a slightly larger range. You
can use this option multiple times.

.byt "S" (no parameter bytes)

“Safe I/O”. Declares that any interrupt handlers used in this demo part
are able to coexist with loading operations that access shadow RAM at
d000-dfff. In practice, such interrupt handlers should back up the value
at address 1, store 35 into 1, handle and acknowledge the interrupt,

Operator’s Handbook rev. 1, Spindle 3.0 27

Spindle Operator’s Handbook

and finally restore the previous value at address 1 (but see the earlier
section on bank selection for a neat trick).

.byt "U" (no parameter bytes)

“Unsafe I/O”. Declares that this part may switch out the I/O registers in
main context, i.e. during prepare or main. If this part follows a part that
lacks the “S” tag, Spindle will make sure to insert a blank part between
the two.

.byt "A" (no parameter bytes)

Avoid (i.e. minimise) loading during this demo part. This is handy for
effects that use a lot of rastertime.

.byt "X" (no parameter bytes)

Don’t schedule any loading at all while this effect is active.

.byt "M",LSB,MSB

Declares that this demo part installs a music player with a given play-
routine address. This option will be described in detail in the Music
section.

.byt "J" (no parameter bytes)

Allows this part to jump to another position in the effect script. If this
tag is present, then when the fadeout routine returns with carry set, it
must leave a label number (in the range 00–3f) in the accumulator to
trigger a jump, or a negative value to proceed normally with the script.

.byt 0 (no parameter bytes)

Marks the end of the tag list.

Following the final tag byte (null) is the loading address of the rest of the file, which
normally contains the code for the demo part. The vectors in the fixed-size header
typically point to routines inside this area.

2.4 Driver

Spindle automatically builds a small piece of code for each effect, called its driver,
that is responsible for running the effect by calling the subroutines at the appro-
priate time. The driver is typically around 48 bytes in size, and will be located

28 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

immediately after the effect object. That means you have to be careful not to
write beyond the end of your compiled code.

The reason for putting the driver immediately next to the effect object is to im-
prove compression. By putting all machine code close together in RAM, the cruncher
is more likely to find common sequences that can be exploited. Of course, if
appending the driver would cause the effect object to spill over into some other
page that is unavailable (e.g. because it’s mentioned in a “P” tag), then the driver
will be placed in some other free location instead.

Drivers are also responsible for making calls to the loader and for monitoring
conditions (e.g. waiting for space). They typically end with a jump to the next
effect driver.

In debug builds (generated by pef2prg), the driver is always located on page 2
(200–2ff).

2.5 Early setup code

You can rely on the Spindle linking framework to carry out certain preparations
before launching the first effect. The preparations are only made once, just before
the demo starts (or just before the standalone effect starts, in case of a debug
build). Specifically, Spindle will make sure to:

• Disable CIA #1 interrupts.

• Enable raster interrupts by writing 1 to d01a.

• Enable keyboard input by writing ff to dc02.

• Block the Restore key by triggering a CIA #2 interrupt and not acknowledging
it. You can easily undo this in your code by reading once from dd0d.

• Prepare CIA #1 timer B to assist with stable raster interrupts, as detailed
below.

As a convenience for the demo coder, Spindle sets up timer B of CIA #1 to count
down repeatedly with a 63-cycle period, synchronised with the raster position. The
choice of timer is compatible with distributed jitter correction of NMIs. The phase
of the countdown period supports delay-based jitter correction of raster interrupts
using the following code snippet, which also appears in template/effect.s:

interrupt
; Jitter correction. Put earliest cycle in parenthesis.

Operator’s Handbook rev. 1, Spindle 3.0 29

Spindle Operator’s Handbook

; (10 with no sprites, 19 with all sprites, ...)
; Length of clockslide can be increased if more jitter
; is expected, e.g. due to NMIs.
dec 0 ; 10..18
sta int_savea+1 ; 15..23
lda #39-(10) ; 19..27 <- (earliest cycle)
sec ; 21..29
sbc $dc06 ; 23..31, A becomes 0..8
sta *+4 ; 27..35
bpl *+2 ; 31..39
lda #$a9 ; 34
lda #$a9 ; 36
lda #$a9 ; 38
lda $eaa5 ; 40

; at cycle 34+(10) = 44

The number in parenthesis (10 in the template code) indicates the earliest possible
cycle on which the interrupt routine might start executing. If you enable sprite
DMA, you will have to increase this number accordingly. If you can’t predict which
sprites are enabled when the interrupt fires, you should increase the length of the
clockslide accordingly.

Both Pefchain and pef2prg allow you to replace the early setup code with a cus-
tom routine, using the -s commandline option. The custom routine can be up to
128 bytes long, and must be able to run from any address (but it won’t cross
a page boundary). The source code for the default setup routine is available in
template/earlysetup.s.

2.6 Overlapping lifecycles

When several Spindle effects are linked together, their lifecycles overlap. Specifi-
cally, the call to prepare is made while the interrupt handler of the previous part
is still active. This clearly won’t work if the memory ranges occupied by adjacent
parts overlap, and that is one of the reasons for having to declare the memory
usage of each part. If two adjacent parts would collide in memory, Pefchain inserts
a blank part between them (and prints a warning about it). The blank part consists
of a completely black screen with no badlines, along with an interrupt handler that
merely calls the current music player.

Loading is performed while the parts are running. Spindle prefers to load during
parts that lack a main routine, but if necessary, it can also schedule some loading

30 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

operations after fadeout returns with carry set, before the call to cleanup. In dire
circumstances, Spindle may be forced to insert a blank part in order to do some
loading (e.g. into shadow RAM), in which case it will also print a warning.

The following illustrates the switchover from one (main-less) demo part to another:

----- Preparations ------------------
1. Load any remaining sectors

(and also load as much as possible
in preparation for later parts)

2. Call prepare
----- Switchover --------------------
3. Disable interrupts
4. Install interrupt vector
5. Call setup
6. Enable interrupts
----- Running ----------------------- ----- Preparations ------------------

1. Load any remaining sectors
(and also load as much as possible
in preparation for later parts)

2. Call prepare
7. Wait for condition (e.g. space)
8. Call fadeout until it sets carry
----- Aftermath --------------------- ----- Switchover --------------------
9. Call cleanup

3. Disable interrupts
4. Install interrupt vector
5. Call setup
6. Enable interrupts
----- Running -----------------------
7. Call main until condition
8. Call main and fadeout

until fadeout sets carry
----- Aftermath ---------------------
9. Call cleanup

When switching from a demo part with a main routine, the items in the simulta-
neous Running and Preparations phases are performed in a different order. In this
case, Spindle starts with steps 7 and 8 of the first part, and then moves on to
steps 1 and 2 of the second, and it tries to minimise rather than maximise the
amount of loading.

Operator’s Handbook rev. 1, Spindle 3.0 31

Spindle Operator’s Handbook

2.7 Making a chain

The script file controls how all the parts fit together to make a trackmo. Here’s an
example:

This line is a comment, and blank lines are ignored.

spindlelogo/spindlelogo.pef -
music/music.pef -
ecmplasma/ecmplasma.pef ed = 0b
lft/lft.pef space
- stay

This trackmo consists of five effects. The first four effects are supplied as .pef
files (paths are relative to the current directory when Pefchain is invoked), and the
fifth (“-”) is the internal blank part, which is simply a black screen and an interrupt
handler that calls the music player.

In the second column are transition conditions. These tell Spindle when it is time
to advance from step 7 to step 8 in the effect lifecycle. There are several kinds of
condition to choose from:

space

Wait for space to be pressed.

-

Drop through to the fadeout stage (after any scheduled loading has
completed).

address = value

Wait until the given address contains the given value. In the example, it
is assumed that the music playroutine stores the current song position
in zero-page location ed.

stay

Never stop this effect. Mainly useful at the end of the script, to prevent
a fadeout when experimenting with different effect orders.

@...

Music player interlock. Described in the section on Music.

With the special effect name “|”, it is possible to extend effects over multiple script
lines. Spindle will wait for each condition in turn, before transitioning to the next

32 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

script line, and the fadeout and cleanup routines won’t get invoked until the very
end of the extended effect. This can be used to wait for 16-bit values:

effect.pef 61 = 5
| 60 = 40

2.8 Music

Music is a fundamental part of any trackmo. This is how it’s handled by Spindle.

2.8.1 Installing a player

Any Spindle effect can install a music player. Such an effect would make a call from
setup to the init routine of the tune, and also declare the address of the playroutine
using the “M” tag. Please have a look at examples/pefchain/music/install.s for
a minimal example.

The interrupt handlers of subsequent effects should be fitted with a dummy three-
byte instruction, bit !0 (that’s 2c 00 00), and the address of this instruction should
be given in the last field of the fixed .efo header. At link time (not runtime), Spindle
replaces the dummy instruction with a jsr to the currently installed playroutine.
This makes it very easy to move parts around in a trackmo with multiple tunes,
and to move tunes around in memory. The bit instruction remains if the part is
scheduled to run even though no music player has been installed.

Only one music player may be active at a time, so installing a second player
replaces the first one. To uninstall the current music player, use the “M” tag with
a null parameter.

The data chunk containing the tune must of course remain in memory for the
entire duration of the song. This is indicated by the --music option to mkpef, like
this:

mkpef -o music.pef install.efo --music song.sid,,7c

You can list many files after the --music tag, and they will all remain in memory
until the music player is uninstalled or replaced.

For clarity, the music-installing effect itself should call the playroutine directly,
rather than having a modifiable bit !0 instruction. Its “location of playroutine call”

Operator’s Handbook rev. 1, Spindle 3.0 33

Spindle Operator’s Handbook

header field should be null.

When an effect is launched as a standalone program by means of pef2prg, its
playroutine call is diverted to a placeholder routine that changes the border colour
and does nothing for a configurable number of rasterlines. You can adjust the
time spent in this call (including jsr and rts) using the -p commandline option
to pef2prg. The default is 25 rasterlines, and a value of 0 disables the feature.

An effect can have multiple playroutine calls scattered through the code. There’s
only one header field, pointing to one of these call sites. But further call sites can
be chained together using the operand bytes, like so:

... efo header ...

.word callmusic1 ; location of first playroutine call

...

callmusic1
bit callmusic2

...

callmusic2
bit callmusic3

...

callmusic3
bit !0

The call sites don’t have to be declared in any particular order, and they will all be
replaced by a jsr to the currently installed playroutine.

2.8.2 Synchronisation

Spindle lets you synchronise effect transitions to music, from within the script. The
simplest method is to wait for a memory location inside the playroutine to change,
using the address = value syntax. Unfortunately this method is somewhat brittle:
If there are read errors, loading might take longer than usual, and the playroutine
will keep going and may eventually update the address a second time. Then, by
the time the condition is actually checked, it will be too late, and the trackmo will
hang forever on that effect.

34 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

A more robust (but also more complicated) approach is to use an interlock. This is
a two-way handshake between the Pefchain driver and the music player, through
a single memory location. It requires a bit of work on the music player side—often
just a few instructions that are triggered from the music, e.g. by a special “sync
here” tracker command.

The music initialisation routine clears the interlock location. Then, during play-
back, the procedure is as follows:

• The effect driver sets the location to 1.

• When the music player reaches a sync point, the location is supposed to
contain 1. If not, the player must pause the music. This could be as simple
as skipping the part where the current playback position is updated. As soon
as the location contains 1, playback resumes.

• The music player clears the location to 0.

• The effect driver detects that the location is 0 and proceeds with the trackmo.

The address of the interlock is specified using the -@ commandline option to Pef-
chain.

This is how the process might be implemented in a playroutine:

playroutine
dec timer
bne no_new_line

lda curr_tempo
sta timer

; handle music data on current line...

; ...

cmp #... ; do we have a sync command?
bne no_sync

lsr INTERLOCK ; clear and check
bcc no_new_line ; loading error, sync delayed

no_sync
inc curr_line ; advance to next line

no_new_line
; update glides, vibrato etc.

Operator’s Handbook rev. 1, Spindle 3.0 35

Spindle Operator’s Handbook

; ...

rts

Pefchain ignores any characters following the “@” in the condition column. Thus, a
music packer could be made to look at the Spindle effect script and automatically
insert sync points into the music data based on these annotations.

The Blackbird music packer (called birdcruncher) supports this syntax: It can scan
a Spindle script for sync points in the format @SS:TT where SS is the song position
and TT is the track position, in hex. Given the following script:

part1.pef @05:00
part2.pef @0c:18
part3.pef @10:00
part4.pef stay

birdcruncher inserts three sync points into the music data (the first at song posi-
tion 5, track position 0). Later in the build process, the music data is presumably
baked into a .pef that installs the music player. Finally, Pefchain reads the same
script (and the .pef file) and uses the interlock system to trigger the fadeout of
the first three demo parts when those sync points are encountered.

2.9 Visualisation

Apart from producing a D64 image, Pefchain prints a chart detailing the memory
usage of every effect. Here is an example:

0 1 2 3 4 5 6 7 8 9 a b c d e f sectors
r|......................................***..................... 5 (loader)
r|..******..............................ccc................*.... 14 spindlelogo
r*..MMMMMM***...***.***.*******.*******.|||****.*******.***c***. 84 music
r...||||||..LUU....................c....***....................U 4 ecmplasma
r...||||||cc...ULLL.LLL.LLLLLLLULLL.LLL.LLLLLLLULLLLLLLULLL.LLL. lft
rc..||||||.. (blank)
demo.d64: 557 blocks free (538 for DOS).

By default, every column in the chart corresponds to four pages of RAM, but the
-w option can be given once or twice to increase the granularity. Here is a legend
for the characters:

36 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

r

This memory is reserved for Spindle. It consists of the resident page
and the buffer page, configurable with Pefchain’s -r and -b options,
respectively.

.

This memory is not used by the effect.

L

This memory was loaded from disk.

c

C is for code. This memory was loaded from disk as part of the .efo
chunk, or it might contain driver code generated by Spindle.

M

This memory was loaded from disk and will remain in memory until the
music player is uninstalled or replaced.

U

This memory is used by the effect (but not loaded).

|

This memory is inherited from the previous effect.

*

This memory is being loaded here in preparation for a later effect.

The number just to the left of the effect name indicates how many sectors are
loaded from disk while the effect is running. This is roughly proportional to the
number of stars (“*”) on the same row, but it also depends on how well the data
could be compressed.

As a general rule, Spindle tries to load everthing as early as possible. This be-
haviour is often what you want, and if not, it is very easy to modify by adding
false page-used declarations (“P” tags) to effects. Furthermore, the “X” tag can be
used to minimise the loading that takes place during a particular effect. This has
been done for spindlelogo in the example, because it is more interesting for the
audience if the bulk of the loading occurs after the music has started.

In the example, the blocks loaded during “spindlelogo” correspond to the MMMMMM
and c segments of music.pef. After “music” has been launched, Spindle loads

Operator’s Handbook rev. 1, Spindle 3.0 37

Spindle Operator’s Handbook

a large number of blocks comprising the L and c of “ecmplasma” and most of
the L and c segments of “lft”. However, it cannot load into the memory range
already occupied by the ccc of “spindlelogo”, because this memory is still in use:
Since the video matrix and font of “spindlelogo” remain visible during “music”, the
corresponding memory pages have been declared as inherited (with the “I” tag)
in “music”. Once “ecmplasma” is up and running, Spindle loads and decrunches
the remaining data into this area.

As you can see, the code and data of “ecmplasma” fits perfectly into gaps left
by “lft”. This is no coincidence: The first time you run Pefchain, most parts will
interfere with each other, and Spindle will be forced to insert blank parts between
them. But if it is at all possible to alleviate the situation by moving things around
in memory, a quick glance at the chart will often be enough to see how it should
be done.

Whenever Spindle is forced to insert a blank part for some reason, it prints a
warning. Where applicable, it will also suggest how to address the problem. For
instance, if we switch the order of “ecmplasma” and “lft”, we get the following
output:

Warning: Inserting blank filler because ’music’ and ’lft’ share pages a0-a8.
Suggestion: Move things around or insert a part that only touches pages 04-0f,
25-27,2e-3d,4b-4f,5c-5f,79-7b,8b-8f,9c-9f,b9-bb,d9-db,ed-ef,fb-ff and zero-page
locations 02,20-f3,f9-ff.
0 1 2 3 4 5 6 7 8 9 a b c d e f sectors
r|......................................***..................... 5 (loader)
r|..******..............................ccc................*.... 14 spindlelogo
r*..MMMMMM***...***.***.*******.*******.|||****.*******.***c***. 85 music
rc..||||||..............................***..................... 4 (blank)
r...||||||cc...ULLL.LLL.LLLLLLLULLL.LLL.LLLLLLLULLLLLLLULLL.LLL. lft
r...||||||..LUU....................c...........................U ecmplasma
rc..||||||.. (blank)
demo.d64: 556 blocks free (538 for DOS).

Depending on the demo, the brief black intermission might not be a problem.
Another way of addressing the problem, as is visually clear from the chart, would
be to relocate all of “spindlelogo” to 3400 (and adjust the inheritance declarations
in “music”). But a third option is to follow the suggestion and add a filler part
that doesn’t interfere with the memory of its neighbours. Spindle lists all memory
pages and zero-page locations that are free. Be aware, however, that Spindle
currently doesn’t track zero-page addresses used by the music player, so you have
to take care of that yourself. For instance, my playroutine uses zero-page locations
from e0 up, so I just make sure to stay below that for effect code.

38 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

2.10 Labels, jumps, and loops

Spindle is primarily designed and optimised for linear trackmos, where all data is
loaded in a predictable sequence. But, starting with Spindle 3.0, non-linear loading
is possible using labels.

Labels appear on a line of their own, as a number in the range 00–3f followed by
a colon. They can appear in any order in the script, and multiple labels may refer
to the same effect, but each label must be unique; they can be thought of as 6-bit
filenames.

For instance, this is what an effect script might look like for a demo with a part
selector:

intro.pef space

0:
select.pef -

1a:
effect1.pef space
go-back.pef -

1b:
effect2.pef space
go-back.pef -

In the above example, the effects called “select” and “go-back” are supposed to
trigger jumps in the sequence. To do this, first of all they need to declare the “J” tag
in the effect header. They also need to have a fadeout routine. As usual, fadeout
returns with carry set when it’s time to proceed with the next effect. But when
this happens for a “J” effect, Spindle also checks the value of the accumulator. A
negative number means proceed with the next effect as usual, but a valid label (a
number in the range 00–3f) will trigger a jump to that label.

Thus, in the example, “go-back” might have this as its fadeout routine:

fadeout
lda #0
sec
rts

And the “select” effect would have a fadeout routine that returns with carry clear
until the user has selected a part. Then, it returns with carry set and 1a or 1b in

Operator’s Handbook rev. 1, Spindle 3.0 39

Spindle Operator’s Handbook

the accumulator.

Of course, it’s not strictly necessary to have a separate “go-back” effect: Each
demo part could declare the “J” tag itself, and jump back to the selector part. But
a “go-back” effect makes the design modular and simplifies rearranging the script.

Note that Pefchain will still optimise for the linear case, so for the above script
it will actually load and prepare effect1 while displaying the part selector, and
effect2 while displaying the first instance of the “go-back” effect. To prevent this
preloading, you can insert blank effects between independent segments of the
script:

intro.pef space

0:
select.pef -
- -

1a:
effect1.pef space
go-back.pef -
- -

1b:
effect2.pef space
go-back.pef -

Please be aware that when you jump to a label, the old interrupt routine remains
active until it’s time to setup the new effect. You have to ensure that the new
effect (and any other data that gets loaded in the same go) won’t interfere with
the currently running effect or music player. When you’re not jumping, Pefchain
ensures that adjacent effects don’t get in each other’s way, but as soon as you
break the sequence you have to check this yourself. The visualisation chart is an
invaluable tool for the job.

With the --loop (or -L) option, you can tell Pefchain to automatically jump to a
specific label after reaching the end of the script. This is a special kind of jump
that is predictable at link time, so Pefchain is able to check for memory collisions
and insert a blank effect if necessary.

The ability to jump adds about 40 bytes to the effect driver.

The new (jumped-to) effect will be loaded, and its prepare routine called, before
the cleanup routine of the old effect is called.

40 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

2.11 Flip-disk parts

Pefchain supports multi-side trackmos using the same system of knock codes as
Spin:

pefchain -o side1.d64 --next-magic 86bc4f script1
pefchain -o side2.d64 --my-magic 86bc4f --next-magic c2c278 script2
pefchain -o side3.d64 --my-magic c2c278 script3

When you specify the --next-magic option, pefchain treats the last effect in the
script specially. This will be referred to as the “flip-disk part”. It will not be allowed
to have a main routine, and its transition condition will be the fact that the next
disk side has been detected.

In other words, the flip-disk part will be initialised normally, by calling prepare and
setup and installing the interrupt handler. It will remain in effect until the new disk
side is detected. Then, the fadeout routine will be called in a loop until it returns
with the carry flag set. You could thus use the first fadeout call to trigger some
interrupt-driven animation that removes “flip disk” from the screen, and then
keep carry clear until the animation completes in order to prevent a premature
transition to the first effect on the next disk side.

When fadeout returns with carry set, Spindle will load the first part of the next disk
side and prepare it while the flip-disk part remains active. When this is done, the
cleanup routine of the flip-disk part is called. In this way, you can keep interesting
things on the screen until the call to cleanup comes; in it, trigger some interrupt-
driven animation to really fade out the effect, and busywait in the cleanup routine
until this animation has completed.

In earlier versions of Spindle, the cleanup routine of a flip-disk part was called
before the first prepare routine on the new disk side. This inconsistency has
been fixed in version 3.0.

Keep in mind that the flip-disk part mustn’t use the same memory as the first
effect on the next disk side. Normally, Pefchain would assist you in detecting such
collisions, but it cannot help you here since disk sides are compiled separately.

Finally, it may be useful to be able to detect whether the first part on a disk side
was launched due to a transition from the previous disk side, or directly from the
regular boot loader (e.g. starting in the middle of the trackmo). Before calling the
prepare and setup routines of the first effect on a disk side, Spindle will set the
carry flag if there was a transition from the previous disk side (we’ve “carried

Operator’s Handbook rev. 1, Spindle 3.0 41

Spindle Operator’s Handbook

over”), or if the effect was reached from a jump; otherwise—i.e. if the effect was
started directly from the bootstrap—carry will be clear. For effects later on in the
scripts, the state of the carry flag is undefined.

2.12 Streaming data

Pefchain provides two separate mechanisms for streaming data, one for graphics
and one for music.

2.12.1 Streaming graphics

Normally, a packed effect describes a number of data chunks that should be
present in memory when the effect starts. But with the --stream option to mkpef,
it is possible to specify a series of chunks to be loaded in sequence, across subse-
quent entries in the effect script.

In the following example, data chunks are specified with an explicit loading ad-
dress, to make it easier to see what’s going on. Normal .prg files are also sup-
ported, of course.

Suppose we have four packed effects (the backslash means that the command
continues on the next line):

mkpef -o part1.pef effect1.efo \
--stream data1.bin,4000 data2.bin,5000 data3.bin,4000 data4.bin,5000

mkpef -o part2.pef effect2.efo
mkpef -o part3.pef effect3.efo
mkpef -o part4.pef effect4.efo

And the following script:

part1.pef space
part2.pef space
part3.pef space
part4.pef space

Then the first data chunk (data1.bin) will be loaded in time for part1, data2.bin
will be loaded in time for part2.pef, and so on. The result can look like this:

0 1 2 3 4 5 6 7 8 9 a b c d e f sectors
r|......*.......**.. 6 (loader)

42 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

r|......c***....LL..**.. 7 part1
r|.......c......**..LL.. 5 part2
r|........c.....LL..**.. 5 part3
r|.........c........LL.. part4

You can also tell mkpef to be verbose with -v in order to get a visualisation chart
for a single effect.

Note in particular that the first data chunk after --stream is not delayed. While
this may seem counter-intuitive, it’s often what you want in practice.

The --stream feature is particularly useful when combined with extended effects.
Consider this double buffered system: An interrupt routine consumes data from
a front buffer at 4000, while the loader populates a back buffer at 5000. When
the interrupt is done with the first buffer, it starts reading from 5000; at this point
it’s time to start loading into the buffer at 4000, and so on. Suppose the interrupt
routine stores the MSB of the front buffer address at zero-page location a1. Then
we can do something like:

mkpef -o part1.pef effect1.efo \
--stream data1.bin,4000 data2.bin,5000 data3.bin,4000 data4.bin,5000

and

part1.pef a1 = 50
| a1 = 40
a1 = 50

To spell it out: The first chunk of data (data1.bin) is present at address 4000 when
the effect starts to display. While it displays (or possibly earlier), the second chunk
is loaded at 5000. Once the running effect starts to read the second buffer at 5000,
the script proceeds to the second row (the first “|”), and the third data chunk is
loaded at 4000. Once the running effect reads at 4000 again, the script moves
to the third row, and the fourth data chunk is loaded at 5000. Finally, when the
effect reads at 5000, the script moves to the last row, and immediately begins the
fadeout process (due to the "-" condition).

Also have a look at examples/streaming which combines streaming graphics with
a looping script.

Operator’s Handbook rev. 1, Spindle 3.0 43

Spindle Operator’s Handbook

2.12.2 Streaming music

Recall that an effect script line has two columns: The effect filename and the
condition. But the condition can actually have a special suffix, starting with a colon
and extending to the end of the line, carrying the filename of an additional data
chunk. The filename has to end with .prg (case doesn’t matter here), and there is
no need for whitespace before the colon.

The extra data chunk will be loaded in time for the effect listed on the same line,
and will also be inherited to subsequent effects up to (and including!) the next line
where extra data is added. The automatic inheriting also stops if the current music
player is uninstalled or replaced.

So in the following example, the data from extra1.prg will be present in memory
during “part1”, “part2”, and “part3”. The data from extra2.prg will be present
during “part3”, “part4”, and “part5”, and so on.

part1.pef space:extra1.prg
part2.pef space
part3.pef space:extra2.prg
part4.pef space
part5.pef space:extra3.prg

The resulting visualisation might look like this:

0 1 2 3 4 5 6 7 8 9 a b c d e f sectors
r|......*.......**.. 6 (loader)
r|......c****...LL..**.. 7 part1
r|.......c......||.. part2
r|........c.....||..LL.. part3
r|.........c....**..||.. 5 part4
r|..........c...LL..||.. part5

The Blackbird music packer (called birdcruncher) supports this syntax. When you
tell birdcruncher to use the distributed output format, it can look at a Pefchain
script and create the necessary data chunks and sync points. A complete script
might look like this:

install-music.pef - :musicdata1.prg
part1.pef @05:00:1c00:musicdata2.prg
part2.pef @0c:18
part3.pef @10:00:1800:musicdata3.prg
part4.pef @11:00
part5.pef @11:0c:1c00:musicdata4.prg

44 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

The Blackbird packer only looks at characters following an “@” and expects them
to follow a particular syntax. The initial chunk is only meant for Pefchain, so we
can indulge in some whitespace to make the filenames line up. The corresponding
birdcruncher commandline might look like this (all on a single line):

birdcruncher -t dist -o music-resident.prg
-s 00:00:1800:musicdata1.prg
-@ pefchain-script song.bb

A certain amount of manual fiddling is required to find the best loading spots
and buffer sizes, but on the whole, Spindle and Blackbird form a very powerful
toolchain for creating trackmos with streaming music.

2.13 Effect debugging

Pefchain trusts you to declare all memory ranges used by an effect with “P”, “I”,
and “Z” tags. If you make a mistake in these declarations, the effect may still work
as a standalone program. But in a script, the same effect could trigger obscure
crashes by overwriting code or data that was preloaded for a later effect.

Luckily, the pef2prg tool has an option, -m, for creating a script of monitor com-
mands for the Vice emulator. These commands check that you do not write to
memory locations outside the declared ranges or loaded data chunks.

For instance, if your effect is allowed to touch pages 30–3b and zero-page locations
90–9f, you’d get the script shown below. Location 2ff is used internally by the
pef2prg runtime to enable and disable checking.

watch store 0200 02fe if @ram:$2ff==$aa
watch store 0300 2fff if @ram:$2ff==$aa
watch store 3c00 cfff if @ram:$2ff==$aa
watch store e000 fff9 if @ram:$2ff==$aa
watch store 02 8f if @ram:$2ff==$aa
watch store a0 ff if @ram:$2ff==$aa

By passing the filename of the script to Vice with -moncommands, any out-of-bounds
write will immediately freeze the program and launch the built-in monitor.

Note that this mechanism is not a 100% guarantee. For instance, writes to the I/O
range (d000-dfff), the CPU vectors (fffc-ffff), and registers 0–1 are always allowed.
But when it does work, it can literally save you hours of debugging, so be sure to
use it whenever you can.

Operator’s Handbook rev. 1, Spindle 3.0 45

Spindle Operator’s Handbook

2.14 Using the reserved areas

Like Spin, Pefchain lets you specify a resident page, a buffer page, and a zero-page
area using commandline options -r, -b, and -z, respectively.

The buffer page and zero-page area are available to effects; simply declare usage
with “P” and/or “Z” tags. Naturally, Spindle cannot load anything while such effects
are running, and may be forced to insert blank parts as a consequence.

Effects should never access the resident page.

2.15 Methodology

The following is merely a suggestion on how to work with Spindle. It is included
partly as helpful advice, partly because it may shine a light on some of the design
decisions underpinning the system.

First, create some demo parts. Start with the template, or add an .efo header
to your existing code. In this early phase, you’ll probably only need the fields
prepare, setup, interrupt and possibly main depending on the effect. Use pef2prg
during development. Keep each demo part inside its own subdirectory of your
main project directory for the demo, and give each part a short working name.
The name of the .pef file should be based on this name, rather than something
non-descriptive like effect.pef. As the part evolves from an experimental hack to
an enjoyable demo effect, you should at some point declare what memory pages
and zero-page locations it uses, before you forget all about it. Use the Vice monitor
script feature to verify your declarations.

Once you have the parts, put them into a script in order of increasing awesome-
ness. All transition conditions should be “space” at this point. This stage corre-
sponds to what filmmakers call “initial assembly”. Watch your demo a couple of
times and try out different orders. Study the memory chart, and see if you can
make some radical changes to improve the loading times, e.g. changing the order
of parts, adding some fillers, and—if it isn’t too much work—moving large chunks
of data around. But don’t start micro-optimising at this point, and don’t make any
transitions yet.

Add music if you already know what SID tune you’re going to use. Otherwise, let
the general flow of the effects inspire your choice of soundtrack (or the process of
composing one). Change all transition conditions to the “@” or “address = value”
kinds (or “-” where applicable), so the music drives the overall progress of the
demo. Adjust things until you are happy, and then make a conscious decision that

46 Operator’s Handbook rev. 1, Spindle 3.0

Spindle Operator’s Handbook

you intend to stick with this part order and overall timing.

Now you have what filmmakers call a “rough cut”. Time to start working on the
transitions. Begin with the big stuff, such as adding intermediate parts to e.g.
make a background picture appear in anticipation of an upcoming effect. Since
you know you won’t change the order anymore, you can start using “I” tags to
inherit data across parts, and try to improve loading times in general. You can
also work on eliminating the blank parts inserted by Spindle. At this stage you’ll
probably add fadeout routines to several parts. As the script begins to gel, use the
-E option to simulate disk errors in order to find out where the loading bottlenecks
are.

By now you’ll probably have noticed that some of the switchovers are glitchy.
Where applicable, add cleanup routines to e.g. turn off interrupts and wait for a
particular rasterline before allowing the next part to run. Take care to insert extra
calls to the playroutine where necessary (link them together using the operands
of the bit instructions, as described in the Music section).

Inevitably, you’ll find yourself in an infinite loop where you watch the demo, notice
some detail you wish to change, change it, then watch the demo again just to see
if it still works, notice some other detail you wish to change, and so on. A pro tip is
to write down the small things you notice, then fix them all in one batch before re-
watching. If you are unsure about a fix, use pef2prg to watch that part in isolation.
It’s also quite easy to make mini-scripts for checking a few effects and transitions
at a time.

When you are satisfied with the demo (or the deadline is getting uncomfortably
close, whichever happens first), don’t forget to add directory art using the -a, -t,
and -d options. And, if you have the opportunity, always test your demo on a real
drive.

May your Spindle productions amaze and inspire!

Operator’s Handbook rev. 1, Spindle 3.0 47

